《数据结构与算法》知识点(六)

内部排序

内部排序:全部数据可同时放入内存进行的排序。

外部排序:文件中数据太多,无法全部调入内存进行的排序。

插入类:

直接插入排序。最坏情况是数据递减序,数据比较和移动量最大,达到O(n2),最好是数据是递增序,比较和移动最少为O(n)。趟数是固定的n-1,即使有序,也要依次从第二个元素开始。排序趟数不等于时间复杂度。

折半插入排序 。由于插入第i个元素到r[1]到r[i-1]之间时,前i个数据是有序的,所以可以用折半查找确定插入位置,然后插入。

希尔排序。缩小增量排序。5-3-1。在实际应用中,步长的选取可简化为开始为表长n的一半(n/2),以后每次减半,最后为1。插入的改进,最后一趟已基本有序,比较次数和移动次数相比直接插入最后一趟更少

交换类:

冒泡排序。O(n2)通常认为冒泡是比较差的,可以加些改进,比如在一趟中无数据的交换,则结束等措施。

在数据已基本有序时,冒泡是一个较好的方法

在数据量较少时(15个左右)可以用冒泡

快速排序。

时间复杂度。最好情况:每次支点总在中间,O(nlog2n),平均O(nlog2n)。最坏,数据已是递增或递减,O(n2)。pivotkey的选择越靠近中央,即左右两个子序列长度越接近,排序速度越快。越无序越快。

空间复杂度。需栈空间以实现递归,最坏情况:S(n)=O(n);一般情况:S(n)=O(log2n)

在序列已是有序的情况下,时间复杂度最高。原因:支点选择不当。改进:随机选取支点或最左、最右、中间三个元素中的值处于中间的作为支点,通常可以避免最坏情况。所以,快速排序在表已基本有序的情况下不合适。

在序列长度已较短时,采用直接插入排序、起泡排序等排序方法。序列的个数通常取10左右。

选择类排序:

简单选择排序。O(n2)。总比较次数n(n-1)/2。

堆排序。建堆 O(n),筛选排序O(nlogn)。找出若干个数中最大/最小的前K个数,用堆排序是最好。小根堆中最大的数一定是放在叶子节点上,堆本身是个完全二叉树,完全二叉树的叶子节点的位置大于[n/2]。时间复杂度不会因为待排序序列的有序程度而改变,但是待排序序列的有序程度会影响比较次数。

归并排序。时间:与表长成正比,若一个表表长是m,另一个是n,则时间是O(m+n)。单独一个数组归并,时间:O(nlogn),空间:O(n),比较次数介于(nlogn)/2和(nlogn)-n+1,赋值操作的次数是(2nlogn)。归并排序算法比较占用内存,但却是效率高且稳定的排序算法。在外排序中使用。归并的趟数是logn。

基数排序。在一般情况下,每个结点有 d 位关键字,必须执行 t = d次分配和收集操作。分配的代价:O(n);收集的代价:O(rd) (rd是基数);总的代价为:O( d ×(n + rd))。适用于以数字和字符串为关键字的情况。

枚举排序,通常也被叫做秩排序,比较计数排序。对每一个要排序的元素,统计小于它的所有元素的个数,从而得到该元素在整个序列中的位置,时间复杂度为O(n2)

比较法分类的下界:O(nlogn)

排序算法的一些特点:

堆排序、冒泡排序、快速排序在每趟排序过程中,都会有一个元素被放置在其最终的位置上。

有字符序列 {Q,H,C,Y,P,A,M,S,R,D,F,X} ,新序列{F,H,C,D,P,A,M,Q,R,S,Y,X},是快速排序算法一趟扫描的结果。(拿Q作为分割点,快速排序一轮。二路归并,第一趟排序,得到 n / 2 个长度为 2 的各自有序的子序列,第二趟排序,得到 n / 4 个长度为 4 的各自有序的子序列H Q C Y A P M S D R F X。如果是快速排序的话,第一个元素t将会被放到一个最准确的位置,t前的数均小于t,后面的数均大于t。希尔排序每个小分组内将会是有序的。堆排序,把它构成一颗二叉树的时候,该堆要么就是大根堆,要么就是小根堆,第一趟Y排在最后;冒泡,那么肯定会有数据下沉的动作,第一趟有A在第一位。)

在文件”局部有序”或文件长度较小的情况下,最佳内部排序的方法是直接插入排序。(归并排序要求待排序列已经部分有序,而部分有序的含义是待排序列由若干有序的子序列组成,即每个子序列必须有序,并且其时间复杂度为O(nlog2n);直接插入排序在待排序列基本有序时,每趟的比较次数大为降低,即n-1趟比较的时间复杂度由O(n^2)降至O(n)。在待排序的元素序列基本有序或者每个元素距其最终位置不远也可用插入排序,效率最高的排序方法是插入排序)

排序趟数与序列的原始状态有关的排序方法是优化冒泡和快速排序法。(插入排序和选择排序不管序列的原始状态是什么都要执行n-1趟,优化冒泡和快排不一定。仔细理解排序的次数和比较次数的区别)

不稳定的排序方法:快排,堆排,希尔,选择

要与关键字的初始排列次序无关,那么就是最好、最坏、一般的情况下排序时间复杂度不变, 总共有堆排序,归并排序,选择排序,基数排序

快速排序、Shell 排序、归并排序、直接插入排序的关键码比较次数与记录的初始排列有关。折半插入排序、选择排序无关。(直接插入排序在完全有序的情况下每个元素只需要与他左边的元素比较一次就可以确定他最终的位置;折半插入排序,比较次数是固定的,与初始排序无关;快速排序,初始排序不影响每次划分时的比较次数,都要比较n次,但是初始排序会影响划分次数,所以会影响总的比较次数,但快排平均比较次数最小;归并排序在归并的时候,如果右路最小值比左路最大值还大,那么只需要比较n次,如果右路每个元素分别比左路对应位置的元素大,那么需要比较2*n-1次,所以与初始排序有关)

精俭排序,即一对数字不进行两次和两次以上的比较,插入和归并是“精俭排序”。插入排序,前面是有序的,后面的每一个元素与前面有序的元素比较,比较过的就是有序的了,不会再比较一次。归并每次合并后,内部都是有序的,内部的元素之间不用再比较。选择排序,每次在后面的元素中找到最小的,找最小元素的过程是在没有排好序的那部分进行,所有肯定会比较多次。堆排序也需比较多次。

外部排序

生成合并段(run):读入文件的部分记录到内存->在内存中进行内部排序->将排好序的这些记录写入外存,形成合并段->再读入该文件的下面的记录,往复进行,直至文件中的记录全部形成合并段为止。

外部合并:将上一阶段生成的合并段调入内存,进行合并,直至最后形成一个有序的文件。

外部排序指的是大文件的排序,即待排序的记录存储在外存储器上,待排序的文件无法一次装入内存,需要在内存和外部存储器之间进行多次数据交换,以达到排序整个文件的目的。外部排序最常用的算法是多路归并排序,即将原文件分解成多个能够一次性装入内存的部分,分别把每一部分调入内存完成排序。然后,对已经排序的子文件进行多路归并排序

不管初始序列是否有序, 冒泡、选择排序时间复杂度是O(n^2),归并、堆排序时间复杂度是O(nlogn)

外部排序的总时间 = 内部排序(产出初始归并段)所需时间 + 外存信息读取时间 + 内部归并所需的时间

外排中使用置换选择排序的目的,是为了增加初始归并段的长度。减少外存读写次数需要减小归并趟数

根据内存容量设若干个输入缓冲区和一个输出缓冲区。若采用二路归并,用两个输入缓冲。

归并的方法类似于归并排序的归并算法。增加的是对缓冲的监视,对于输入,一旦缓冲空,要到相应文件读后续数据,对于输出缓冲,一旦缓冲满,要将缓冲内容写到文件中去。

外排序和内排序不只是考虑内外排序算法的性能,还要考虑IO数据交换效率的问题,内存存取速度远远高于外存。影响外排序的时间因素主要是内存与外设交换信息的总次数

有效的算法设计

贪心法。Dijkstra的最短路径(时间复杂度O(n2));Prim求最小生成树邻接表存储时是O(n+e),图O(n2);关键路径及关键活动的求法。

回溯法

分支限界法

分治法。分割、求解、合并。二分查找、归并排序、快速排序。

动态规划。Floyd-Warshall算法求解图中所有点对之间最短路径时间复杂度为O(n3)

动态规划解题的方法是一种高效率的方法,其时间复杂度通常为O(n2),O(n3)等,可以解决相当大的信息量。(数塔在n<=100层时,可以在很短的时间内得到问题解)

适用的原则:原则为优化原则,即整体优化可以分解为若干个局部优化。

动态规划比穷举法具有较少的计算次数

递归算法需要很大的栈空间,而动态规划不需要栈空间

贪心和动态规划的差别:

所谓贪心选择性质是指所求问题的整体最优解可以通过一系列局部最优的选择,即贪心选择来达到。这是贪心算法可行的第一个基本要素,也是贪心算法与动态规划算法的主要区别。

在动态规划算法中,每步所作的选择往往依赖于相关子问题的解。因而只有在解出相关子问题后,才能作出选择。而在贪心算法中,仅在当前状态下作出最好选择,即局部最优选择。然后再去解作出这个选择后产生的相应的子问题。

贪心算法所作的贪心选择可以依赖于以往所作过的选择,但决不依赖于将来所作的选择,也不依赖于子问题的解。正是由于这种差别,动态规划算法通常以自底向上的方式解各子问题,而贪心算法则通常以自顶向下的方式进行,以迭代的方式作出相继的贪心选择,每作一次贪心选择就将所求问题简化为一个规模更小的子问题。

P问题

P问题,如果它可以通过运行多项式次(即运行时间至多是输入量大小的多项式函数的一种算法获得解决),可以找到一个能在多项式的时间里解决它的算法。—-确定性问题

NP问题,虽然可以用计算机求解,但是对于任意常数k,它们不能在O(nk)时间内得到解答,可以在多项式的时间里验证一个解的问题。所有的P类问题都是NP问题。

NP完全问题,知道有效的非确定性算法,但是不知道是否存在有效的确定性算法,同时,不能证明这些问题中的任何一个不存在有效的确定性算法。这类问题称为NP完全问题。

--------------------- Java。大家都知道,我们是学Java全栈的,大家就肯定以为我有全套的Java系统教程。没错,我是有Java全套系统教程,进扣裙【47】974【9726】所示,今天小编就免费送!~

“我们相信人人都可以成为一个程序员,现在开始,找个师兄,带你入门,学习的路上不再迷茫。这里是ja+va修真院,初学者转行到互联网行业的聚集地。"

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,053评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,527评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,779评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,685评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,699评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,609评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,989评论 3 396
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,654评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,890评论 1 298
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,634评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,716评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,394评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,976评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,950评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,191评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,849评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,458评论 2 342

推荐阅读更多精彩内容