CNN训练与测试人脸图片分类(TensorFlow)

实验需要判断人脸是否戴了眼镜,所以参考网上的文章弄了个简单的CNN图片分类器来做戴眼镜与否的判定。

环境如下:

  • macOS 10.13.2
  • Python 2.7
  • TensorFlow 1.2.0

数据集:

要训练我们当然需要训练集,这里我采用的是CelebA的人脸图像数据集,从中筛选出戴了眼镜的人脸和没戴眼镜的人脸分别一千多张也就够了,如何筛选CelebA人脸数据集可以参考我这篇博客:处理筛选CelebA人脸数据集

将两个分别装有戴眼镜与否的人脸图片的文件夹放到我们工程目录下,然后开始写代码。

训练代码:

train_glass.py

# -*- coding: utf-8 -*-

from skimage import io,transform
import glob
import os
import tensorflow as tf
import numpy as np
import time

#数据集地址
path='./'
#模型保存地址
model_path='./model/model.ckpt'

#将所有的图片resize成100*100
w=100
h=100
c=3


#读取图片
def read_img(path):
    cate=[path+x for x in os.listdir(path) if os.path.isdir(path+x)]
    imgs=[]
    labels=[]
    for idx,folder in enumerate(cate):
        for im in glob.glob(folder+'/*.jpg'):
            print('reading the images:%s'%(im))
            img=io.imread(im)
            img=transform.resize(img,(w,h))
            imgs.append(img)
            labels.append(idx)
    return np.asarray(imgs,np.float32),np.asarray(labels,np.int32)
data,label=read_img(path)


#打乱顺序
num_example=data.shape[0]
arr=np.arange(num_example)
np.random.shuffle(arr)
data=data[arr]
label=label[arr]


#将所有数据分为训练集和验证集
ratio=0.8
s=np.int(num_example*ratio)
x_train=data[:s]
y_train=label[:s]
x_val=data[s:]
y_val=label[s:]

#-----------------构建网络----------------------
#占位符
x=tf.placeholder(tf.float32,shape=[None,w,h,c],name='x')
y_=tf.placeholder(tf.int32,shape=[None,],name='y_')

def inference(input_tensor, train, regularizer):
    with tf.variable_scope('layer1-conv1'):
        conv1_weights = tf.get_variable("weight",[5,5,3,32],initializer=tf.truncated_normal_initializer(stddev=0.1))
        conv1_biases = tf.get_variable("bias", [32], initializer=tf.constant_initializer(0.0))
        conv1 = tf.nn.conv2d(input_tensor, conv1_weights, strides=[1, 1, 1, 1], padding='SAME')
        relu1 = tf.nn.relu(tf.nn.bias_add(conv1, conv1_biases))

    with tf.name_scope("layer2-pool1"):
        pool1 = tf.nn.max_pool(relu1, ksize = [1,2,2,1],strides=[1,2,2,1],padding="VALID")

    with tf.variable_scope("layer3-conv2"):
        conv2_weights = tf.get_variable("weight",[5,5,32,64],initializer=tf.truncated_normal_initializer(stddev=0.1))
        conv2_biases = tf.get_variable("bias", [64], initializer=tf.constant_initializer(0.0))
        conv2 = tf.nn.conv2d(pool1, conv2_weights, strides=[1, 1, 1, 1], padding='SAME')
        relu2 = tf.nn.relu(tf.nn.bias_add(conv2, conv2_biases))

    with tf.name_scope("layer4-pool2"):
        pool2 = tf.nn.max_pool(relu2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID')

    with tf.variable_scope("layer5-conv3"):
        conv3_weights = tf.get_variable("weight",[3,3,64,128],initializer=tf.truncated_normal_initializer(stddev=0.1))
        conv3_biases = tf.get_variable("bias", [128], initializer=tf.constant_initializer(0.0))
        conv3 = tf.nn.conv2d(pool2, conv3_weights, strides=[1, 1, 1, 1], padding='SAME')
        relu3 = tf.nn.relu(tf.nn.bias_add(conv3, conv3_biases))

    with tf.name_scope("layer6-pool3"):
        pool3 = tf.nn.max_pool(relu3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID')

    with tf.variable_scope("layer7-conv4"):
        conv4_weights = tf.get_variable("weight",[3,3,128,128],initializer=tf.truncated_normal_initializer(stddev=0.1))
        conv4_biases = tf.get_variable("bias", [128], initializer=tf.constant_initializer(0.0))
        conv4 = tf.nn.conv2d(pool3, conv4_weights, strides=[1, 1, 1, 1], padding='SAME')
        relu4 = tf.nn.relu(tf.nn.bias_add(conv4, conv4_biases))

    with tf.name_scope("layer8-pool4"):
        pool4 = tf.nn.max_pool(relu4, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID')
        nodes = 6*6*128
        reshaped = tf.reshape(pool4,[-1,nodes])

    with tf.variable_scope('layer9-fc1'):
        fc1_weights = tf.get_variable("weight", [nodes, 1024],
                                      initializer=tf.truncated_normal_initializer(stddev=0.1))
        if regularizer != None: tf.add_to_collection('losses', regularizer(fc1_weights))
        fc1_biases = tf.get_variable("bias", [1024], initializer=tf.constant_initializer(0.1))

        fc1 = tf.nn.relu(tf.matmul(reshaped, fc1_weights) + fc1_biases)
        if train: fc1 = tf.nn.dropout(fc1, 0.5)

    with tf.variable_scope('layer10-fc2'):
        fc2_weights = tf.get_variable("weight", [1024, 512],
                                      initializer=tf.truncated_normal_initializer(stddev=0.1))
        if regularizer != None: tf.add_to_collection('losses', regularizer(fc2_weights))
        fc2_biases = tf.get_variable("bias", [512], initializer=tf.constant_initializer(0.1))

        fc2 = tf.nn.relu(tf.matmul(fc1, fc2_weights) + fc2_biases)
        if train: fc2 = tf.nn.dropout(fc2, 0.5)

    with tf.variable_scope('layer11-fc3'):
        fc3_weights = tf.get_variable("weight", [512, 2],
                                      initializer=tf.truncated_normal_initializer(stddev=0.1))
        if regularizer != None: tf.add_to_collection('losses', regularizer(fc3_weights))
        fc3_biases = tf.get_variable("bias", [2], initializer=tf.constant_initializer(0.1))
        logit = tf.matmul(fc2, fc3_weights) + fc3_biases

    return logit

#---------------------------网络结束---------------------------
regularizer = tf.contrib.layers.l2_regularizer(0.0001)
logits = inference(x,False,regularizer)

#(小处理)将logits乘以1赋值给logits_eval,定义name,方便在后续调用模型时通过tensor名字调用输出tensor
b = tf.constant(value=1,dtype=tf.float32)
logits_eval = tf.multiply(logits,b,name='logits_eval') 

loss=tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=y_)
train_op=tf.train.AdamOptimizer(learning_rate=0.001).minimize(loss)
correct_prediction = tf.equal(tf.cast(tf.argmax(logits,1),tf.int32), y_)    
acc= tf.reduce_mean(tf.cast(correct_prediction, tf.float32))


#定义一个函数,按批次取数据
def minibatches(inputs=None, targets=None, batch_size=None, shuffle=False):
    assert len(inputs) == len(targets)
    if shuffle:
        indices = np.arange(len(inputs))
        np.random.shuffle(indices)
    for start_idx in range(0, len(inputs) - batch_size + 1, batch_size):
        if shuffle:
            excerpt = indices[start_idx:start_idx + batch_size]
        else:
            excerpt = slice(start_idx, start_idx + batch_size)
        yield inputs[excerpt], targets[excerpt]


#训练和测试数据,可将n_epoch设置更大一些

n_epoch=10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           
batch_size=64
saver=tf.train.Saver()
sess=tf.Session()  
sess.run(tf.global_variables_initializer())
for epoch in range(n_epoch):
    start_time = time.time()

    print("====epoch %d====="%epoch)

    #training
    train_loss, train_acc, n_batch = 0, 0, 0
    for x_train_a, y_train_a in minibatches(x_train, y_train, batch_size, shuffle=True):
        _,err,ac=sess.run([train_op,loss,acc], feed_dict={x: x_train_a, y_: y_train_a})
        train_loss += err; train_acc += ac; n_batch += 1
    print("   train loss: %f" % (np.sum(train_loss)/ n_batch))
    print("   train acc: %f" % (np.sum(train_acc)/ n_batch))

    #validation
    val_loss, val_acc, n_batch = 0, 0, 0
    for x_val_a, y_val_a in minibatches(x_val, y_val, batch_size, shuffle=False):
        err, ac = sess.run([loss,acc], feed_dict={x: x_val_a, y_: y_val_a})
        val_loss += err; val_acc += ac; n_batch += 1
    print("   validation loss: %f" % (np.sum(val_loss)/ n_batch))
    print("   validation acc: %f" % (np.sum(val_acc)/ n_batch))
saver.save(sess,model_path)
sess.close()

代码一开始获取了数据集,因为有两个戴眼镜与否的目录,所以这份代码不需要具体写所有目录,代码会识别有两个目录,也就表示图片有两个类别——戴眼镜与不戴眼镜。

生成的模型文件我们保存在model文件夹下。

代码将80%的图片作为训练集,剩下20%的图片作为测试集,来查看训练效果。

其余部分代码中的注释讲的很清楚了,现在可以直接在终端运行这个python文件开始训练了。

一开始会读取所有图片,然后进行训练,训练有十轮,轮数可以通过修改“n_epoch”变量来改变,但是十轮下来效果已经很好了。用mac跑半小时也就训练完了。

第一轮的损失及准确率情况:

====epoch 0=====
   train loss: 1327.149698
   train acc: 0.575101
   validation loss: 25.071056
   validation acc: 0.845982

很正常,毕竟是二分类,瞎蒙也有50%的准确率嘛

第十轮的损失及准确率情况:

====epoch 10=====
   train loss: 0.066756
   train acc: 1.000000
   validation loss: 1.637226
   validation acc: 0.991071

可以看到,第十轮的训练损失已经非常小了,只有0.066756,而准确率居然到了100%。。。测试集的准确率也到了99.1%。要说明的是这些值每次都可能不一样,只是参考。

现在可以开始测试了。

测试代码

inference_glass.py

# -*- coding: utf-8 -*-

from skimage import io,transform
import tensorflow as tf
import numpy as np


path1 = "./face范冰冰眼镜.jpg"
path2 = "./face黄晓明眼镜.jpg"
path3 = "./face林志玲眼镜.jpg"
path4 = "./face徐峥无眼镜.jpg"
path5 = "./face赵薇无眼镜.jpg"

face_dict = {1:'Has Glass',0:'No Glass'}

w=100
h=100
c=3

def read_one_image(path):
    img = io.imread(path)
    img = transform.resize(img,(w,h))
    return np.asarray(img)

with tf.Session() as sess:
    data = []
    data1 = read_one_image(path1)
    data2 = read_one_image(path2)
    data3 = read_one_image(path3)
    data4 = read_one_image(path4)
    data5 = read_one_image(path5)
    data.append(data1)
    data.append(data2)
    data.append(data3)
    data.append(data4)
    data.append(data5)

    saver = tf.train.import_meta_graph('./model/model.ckpt.meta')
    saver.restore(sess,tf.train.latest_checkpoint('./model/'))

    graph = tf.get_default_graph()
    x = graph.get_tensor_by_name("x:0")
    feed_dict = {x:data}

    logits = graph.get_tensor_by_name("logits_eval:0")

    classification_result = sess.run(logits,feed_dict)

    #打印出预测矩阵
    print(classification_result)
    #打印出预测矩阵每一行最大值的索引
    print(tf.argmax(classification_result,1).eval())
    #根据索引通过字典对应人脸的分类
    output = []
    output = tf.argmax(classification_result,1).eval()
    for i in range(len(output)):
        print("No.",i+1,"face is belong to:"+face_dict[output[i]])

这里我们放入五张人脸图片作为测试数据,注意,这里的测试与上文训练代码中的测试不是一个意思,这里是真正用来做分类,上文的测试只是用来检验训练结果。

五张测试用的明星脸

“face_dict”数组保存了分类结果的说明,训练后如果分类为1表示戴了眼镜,如果分类为0表示没戴眼镜,最后的代码也可以看到结果输出是用这个数组来转换结果的。

测试结果如下:

[[ -9.42931938  11.11681461]
 [ -3.12095881   3.74463916]
 [ -4.20803499   8.95589638]
 [  4.09471083  -0.16824517]
 [  6.93871641  -2.67873168]]
[1 1 1 0 0]
('No.', 1, 'face is belong to:Has Glass')
('No.', 2, 'face is belong to:Has Glass')
('No.', 3, 'face is belong to:Has Glass')
('No.', 4, 'face is belong to:No Glass')
('No.', 5, 'face is belong to:No Glass')

可以对比我们的输入图片名来看,发现结果全部正确!

我的工程:https://github.com/Cloudox/CNN_Face_Glass_Classfy

参考文章:http://blog.csdn.net/Enchanted_ZhouH/article/details/74116823


查看作者首页

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,254评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,875评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,682评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,896评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,015评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,152评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,208评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,962评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,388评论 1 304
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,700评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,867评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,551评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,186评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,901评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,142评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,689评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,757评论 2 351

推荐阅读更多精彩内容