一、用途
先说一个最直接的用途。把sin(3x)+sin(5x)的曲线给你,但是前提是你不知道这个曲线的方程式,现在需要你把sin(5x)给我从图里拿出去,看看剩下的是什么。这基本是不可能做到的。但是在频域呢?则简单的很,无非就是几条竖线而已。尤其是从某条曲线中去除一些特定的频率成分,这在工程上称为滤波,是信号处理最重要的概念之一,只有在频域才能轻松的做到。
再说一个更重要,但是稍微复杂一点的用途——求解微分方程。(这段有点难度,看不懂的可以直接跳过这段)微分方程的重要性不用我过多介绍了。各行各业都用的到。但是求解微分方程却是一件相当麻烦的事情。因为除了要计算加减乘除,还要计算微分积分。而傅里叶变换则可以让微分和积分在频域中变为乘法和除法,大学数学瞬间变小学算术有没有。
二、傅里叶级数(Fourier Series)的频谱
可以发现,在频谱中,偶数项的振幅都是0,也就对应了图中的彩色直线。振幅为0的正弦波。也就是说,为了组成特殊的曲线,有些正弦波成分是不需要的。
如果我们把第一个频率最低的频率分量看作“1”,我们就有了构建频域的最基本单元。对于我们最常见的有理数轴,数字“1”就是有理数轴的基本单元。时域的基本单元就是“1秒”,如果我们将一个角频率为的正弦波看作基础,那么频域的基本单元就是
有了“1”,还要有“0”才能构成世界,那么频域的“0”是什么呢?就是一个周期无限长的正弦波,也就是一条直线!所以在频域,0频率也被称为直流分量,在傅里叶级数的叠加中,它仅仅影响全部波形相对于数轴整体向上或是向下而不改变波的形状。
正弦波就是一个圆周运动在一条直线上的投影。所以频域的基本单元也可以理解为一个始终在旋转的圆
三、傅里叶级数(Fourier Series)的相位谱
上一章的关键词是:从侧面看。这一章的关键词是:从下面看。
通过时域到频域的变换,我们得到了一个从侧面看的频谱,但是这个频谱并没有包含时域中全部的信息。因为频谱只代表每一个对应的正弦波的振幅是多少,而没有提到相位。基础的正弦波A.sin(wt+θ)中,振幅,频率,相位缺一不可,不同相位决定了波的位置,所以对于频域分析,仅仅有频谱(振幅谱)是不够的,我们还需要一个相位谱。那么这个相位谱在哪呢?我们看下图,这次为了避免图片太混论,我们用7个波叠加的图。
鉴于正弦波是周期的,我们需要设定一个用来标记正弦波位置的东西。在图中就是那些小红点。小红点是距离频率轴最近的波峰,而这个波峰所处的位置离频率轴有多远呢?为了看的更清楚,我们将红色的点投影到下平面,投影点我们用粉色点来表示。当然,这些粉色的点只标注了波峰距离频率轴的距离,并不是相位。
时间差并不是相位差。如果将全部周期看作2Pi或者360度的话,相位差则是时间差在一个周期中所占的比例。我们将时间差除周期再乘2Pi,就得到了相位差。
在完整的立体图中,我们将投影得到的时间差依次除以所在频率的周期,就得到了最下面的相位谱。所以,频谱是从侧面看,相位谱是从下面看。
注意到,相位谱中的相位除了0,就是。因为,所以实际上相位为的波只是上下翻转了而已。对于周期方波的傅里叶级数,这样的相位谱已经是很简单的了。另外值得注意的是,由于,所以相位差是周期的,和都是相同的相位。人为定义相位谱的值域为,所以图中的相位差均为。
四、傅里叶变换(Fourier Transformation)
傅里叶级数,在时域是一个周期且连续的函数,而在频域是一个非周期离散的函数。
傅里叶变换是将一个时域非周期的连续信号,转换为一个在频域非周期的连续信号。
(a).周期函数,可以通过傅立叶级数画出频域图
(b).增长周期,频域图变得越来越密集
(c)T为无穷,得到傅立叶变换,频域图变为连续的曲线
五、欧拉公式
虚数i我们只知道它是-1的平方根,可是它真正的意义是什么呢?
在数轴上有一个红色的线段,它的长度是1。当它乘以3的时候,它的长度发生了变化,变成了蓝色的线段,而当它乘以-1的时候,就变成了绿色的线段,或者说线段在数轴上围绕原点旋转了180度。我们知道乘-1其实就是乘了两次 i使线段旋转了180度,那么乘一次 i 呢——答案很简单——旋转了90度。
同时,我们获得了一个垂直的虚数轴。实数轴与虚数轴共同构成了一个复数的平面,也称复平面。这样我们就了解到,乘虚数i的一个功能——旋转。
欧拉公式:
当x等于Pi的时候:
这个公式关键的作用,是将正弦波统一成了简单的指数形式。我们来看看图像上的涵义:
欧拉公式所描绘的,是一个随着时间变化,在复平面上做圆周运动的点,随着时间的改变,在时间轴上就成了一条螺旋线。如果只看它的实数部分,也就是螺旋线在左侧的投影,就是一个最基础的余弦函数。而右侧的投影则是一个正弦函数。
六、指数形式的傅里叶变换
这里,我们可以用两种方法来理解正弦波:
第一种前面已经讲过了,就是螺旋线在实轴的投影。
另一种需要借助欧拉公式的另一种形式去理解:
将以上两式相加再除2,得到:
我们刚才讲过,可以理解为一条逆时针旋转的螺旋线,那么则可以理解为一条顺时针旋转的螺旋线。而则是这两条旋转方向不同的螺旋线叠加的一半,因为这两条螺旋线的虚数部分相互抵消掉了!
傅立叶级数是向量
从代数上看,傅立叶级数就是通过三角函数和常数项来叠加逼近周期为的函数
- 有常数项
- 奇函数和偶函数可以组合出任意函数
- 周期为
- 调整振幅,逼近原函数
在“代数细节”一文中解释了,实际上是把当作了如下基的向量:
是基1下的坐标,是对应基的坐标
比如刚才提到的,的方波,可以初略的写作:
非周期函数
这并非一个周期函数,没有办法写出傅立叶级数。不过可以变换一下思维,如果刚才的方波的周期:那么就得到了这个函数: