【Kafka源码】ReplicaManager启动过程

在KafkaServer启动过程的入口中,会启动Replica Manager,众所周知,这是一个副本管理器。replica在Kafka中扮演的角色很重要,是保证消息不丢失的一个重要概念。

replica的个人理解概念如下:producer发送的消息给broker,broker是分为多个partition的,对于同一个partition中的broker,这些机器是有主从的概念的。producer只会向leader写入消息,consumer只会从leader读取消息,(leader负责读写,replica保证消息不丢)。为了保证消息不丢失,follower会定时从leader拉取消息,保持与leader的消息同步。当然,producer可以配置是否需要有follower同步成功,以及需要多少个replica,(即需要多少个ack)才算是消息发送成功。这块看个人的需求。

下面我们看下Replica Manager的启动过程。

一、入口

入口在KafkaServer的start方法中,比较简洁:

replicaManager = new ReplicaManager(config, metrics, time, kafkaMetricsTime, zkUtils, kafkaScheduler, logManager,isShuttingDown)
replicaManager.startup()

我们主要看下ReplicaManager里面都有什么内容。

二、ReplicaManager实例化

我们看看实例化的过程:

/* epoch of the controller that last changed the leader */
@volatile var controllerEpoch: Int = KafkaController.InitialControllerEpoch - 1
private val localBrokerId = config.brokerId
private val allPartitions = new Pool[(String, Int), Partition](valueFactory = Some { case (t, p) =>
  new Partition(t, p, time, this)
})
private val replicaStateChangeLock = new Object
val replicaFetcherManager = new ReplicaFetcherManager(config, this, metrics, jTime, threadNamePrefix)
private val highWatermarkCheckPointThreadStarted = new AtomicBoolean(false)
val highWatermarkCheckpoints = config.logDirs.map(dir => (new File(dir).getAbsolutePath, new OffsetCheckpoint(new File(dir, ReplicaManager.HighWatermarkFilename)))).toMap
private var hwThreadInitialized = false
this.logIdent = "[Replica Manager on Broker " + localBrokerId + "]: "
val stateChangeLogger = KafkaController.stateChangeLogger
private val isrChangeSet: mutable.Set[TopicAndPartition] = new mutable.HashSet[TopicAndPartition]()
private val lastIsrChangeMs = new AtomicLong(System.currentTimeMillis())
private val lastIsrPropagationMs = new AtomicLong(System.currentTimeMillis())

val delayedProducePurgatory = DelayedOperationPurgatory[DelayedProduce](
    purgatoryName = "Produce", config.brokerId, config.producerPurgatoryPurgeIntervalRequests)
val delayedFetchPurgatory = DelayedOperationPurgatory[DelayedFetch](
    purgatoryName = "Fetch", config.brokerId, config.fetchPurgatoryPurgeIntervalRequests)
  • 首先是这个controllerEpoch,这个值表示的是leader发生变化时controller的epoch。epoch存储在zk中的/Controller_epoch中。
  • 第二步是从配置broker.id中获取当前机器的brokerId。
  • 实例化ReplicaFetcherManager,是一个follower从leader拉取消息的管理器,这里面有文章。
  • 设置highWatermarkCheckPointThreadStarted为false,为了后续启动相关的线程用。
  • 从文件(replication-offset-checkpoint)中获取所有topic和partition的HW,这个文件中存储了每个topic和partition对应的最新的checkPoint对应的offset值。HW表示的是topic的partition对应的最后一次commit的消息的offset值,也是用于消息完整性的保证。
  • 定义了isrChangerSet,表示了isr改变顺序的集合。至于isr是干啥的,网上的内容比较多,搜索即可。
  • 最后涉及到两个配置,分别是:
    • producer.purgatory.purge.interval.requests:默认值1000,用于在procucer的ack设置是-1或者1时,跟踪消息是否添加成功,使用DelayedProduce实现。成功后清除。
    • fetch.purgatory.purge.interval.requests:默认值1000,fetch 请求清除时的清除间隔

三、启动ReplicaManager

我们主要看下ReplicaManager的start方法:

def startup() {
// start ISR expiration thread
scheduler.schedule("isr-expiration", maybeShrinkIsr, period = config.replicaLagTimeMaxMs, unit = TimeUnit.MILLISECONDS)
scheduler.schedule("isr-change-propagation", maybePropagateIsrChanges, period = 2500L, unit = TimeUnit.MILLISECONDS)
}

这块主要启动了两个定时任务,分别是maybeShrinkIsr和maybePropagateIsrChanges。下面我们着重分析下。

3.1 maybeShrinkIsr

这个方法的调用时间间隔由配置replica.lag.time.max.ms控制,主要用于检查partition对应的isr列表中是否有心跳过期的isr。

  private def maybeShrinkIsr(): Unit = {
    trace("Evaluating ISR list of partitions to see which replicas can be removed from the ISR")
    allPartitions.values.foreach(partition => partition.maybeShrinkIsr(config.replicaLagTimeMaxMs))
  }

这块主要是遍历了所有的partition,每个partition都执行maybeShrinkIsr方法,下面我们进入maybeShrinkIsr,分析下主要做了哪些事情。

  def maybeShrinkIsr(replicaMaxLagTimeMs: Long) {
    val leaderHWIncremented = inWriteLock(leaderIsrUpdateLock) {
      leaderReplicaIfLocal() match {
        case Some(leaderReplica) =>
          val outOfSyncReplicas = getOutOfSyncReplicas(leaderReplica, replicaMaxLagTimeMs)
          if(outOfSyncReplicas.size > 0) {
            val newInSyncReplicas = inSyncReplicas -- outOfSyncReplicas
            assert(newInSyncReplicas.size > 0)
            info("Shrinking ISR for partition [%s,%d] from %s to %s".format(topic, partitionId,
              inSyncReplicas.map(_.brokerId).mkString(","), newInSyncReplicas.map(_.brokerId).mkString(",")))
            // update ISR in zk and in cache
            updateIsr(newInSyncReplicas)
            // we may need to increment high watermark since ISR could be down to 1

            replicaManager.isrShrinkRate.mark()
            maybeIncrementLeaderHW(leaderReplica)
          } else {
            false
          }

        case None => false // do nothing if no longer leader
      }
    }

整个步骤如下:

  • leaderReplicaIfLocal:先检查当前的partition的leader是否为当前的broker,如果为是,就不进入下面的方法,否则进入下面的方法。
  • getOutOfSyncReplicas:获取不同步的replica列表,获取的方法是首先从isr中去除掉leader,然后把当前时间-lastCaughtUpTimeMs大于replicaMaxLagTimeMs的replica筛选出来,即为outOfSyncReplicas。这里面的lastCaughtUpTimeMs是指上次同步的时间,不一定是心跳时间。
  • 如果outOfSyncReplicas中存在replica,则继续。两个列表进行差值运算后得到新的isr列表,之后更新isr列表(即zk中的数据)。
  • 最后可能需要更新下HW

3.2 maybePropagateIsrChanges

这个方法的调用时间是固定的,不由配置决定,代码中写死,为2500ms。这个方法会把isr的变化内容更新到zk中去,执行这个方法的条件是:

  • ISR变化没有被广播出去
  • 最近5s内没有ISR变化或者上次广播的时间距离当前时间超过了60s,其实这里的广播就是指写入到zk中
  def maybePropagateIsrChanges() {
    val now = System.currentTimeMillis()
    isrChangeSet synchronized {
      if (isrChangeSet.nonEmpty &&
        (lastIsrChangeMs.get() + ReplicaManager.IsrChangePropagationBlackOut < now ||
          lastIsrPropagationMs.get() + ReplicaManager.IsrChangePropagationInterval < now)) {
        ReplicationUtils.propagateIsrChanges(zkUtils, isrChangeSet)
        isrChangeSet.clear()
        lastIsrPropagationMs.set(now)
      }
    }
  }
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,718评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,683评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,207评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,755评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,862评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,050评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,136评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,882评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,330评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,651评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,789评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,477评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,135评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,864评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,099评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,598评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,697评论 2 351

推荐阅读更多精彩内容