R语言基础
https://www.cnblogs.com/think-and-do/p/6549422.html
作图
http://www.360doc.com/content/17/0111/15/19913717_621780543.shtml
https://blog.csdn.net/woodcorpse/column/info/19360(R语言绘图包)
https://www.cnblogs.com/xuanlvshu/p/6129510.html(圆弧条形图)
https://www.cnblogs.com/xudongliang/p/7884667.html(花瓣图,组别大于5)
http://www.a-site.cn/article/193237.html (基因组展示Rcircos)
https://blog.csdn.net/qazplm12_3/article/details/76474682 (linux R 画火山图)
https://blog.csdn.net/u014801157/article/details/24372531 (ggplot2参数)
Python学习
http://scu.zju.edu.cn/redir.php?catalog_id=58400&object_id=205537
http://scu.zju.edu.cn/redir.php?catalog_id=58400&object_id=206185
http://www.cnblogs.com/IvyWong/p/9784441.html (程序运行结束发送邮件)
python绘图与可视化
https://www.cnblogs.com/zhizhan/p/5615947.html (matplotlib参数介绍)
https://www.cnblogs.com/darkknightzh/p/6117528.html (色谱)
http://blog.sciencenet.cn/blog-301516-408670.html (配色设计)
https://blog.csdn.net/qq_41841569/article/details/83824342(圈型饼图)
随机网络
http://blog.sciencenet.cn/home.php?do=blog&id=337442&mod=space&uid=404069
WGCNA(加权基因共表达网络分析)
http://www.biotrainee.com/thread-704-1-1.html(胡永飞教程)
http://tiramisutes.github.io/2016/09/14/WGCNA.html(画热图报错解决)
https://www.cnblogs.com/wkslearner/p/5731015.html(胡永飞教程:reshape2包dcast函数)
http://blog.sina.com.cn/s/blog_5d5320cd0102w56k.html(详细)
http://blog.sina.com.cn/s/blog_61f013b80101lcpr.html(逐步构建)
http://scu.zju.edu.cn/redir.php?catalog_id=58400&object_id=209293
http://www.360doc.com/content/17/0111/15/19913717_621780330.shtml
https://max.book118.com/html/2017/0715/122326492.shtm (讲义)
http://www.bio-info-trainee.com/2535.html
http://blog.sina.com.cn/s/blog_61f013b80101lcpr.html(详细更新)
https://www.jianshu.com/p/e2acfee2ba5f (关于hub标准的讨论)
https://blog.csdn.net/weixin_43569478/article/details/83747196 (hub gene)
https://www.jianshu.com/p/25905a905086 (hub gene 及后续)
https://www.jianshu.com/p/f0409a045dab(网站汇总)
https://www.jianshu.com/p/b7626aef5efb(过程图的解释)
非常好的转录组技术入门*
http://blog.fungenomics.com/2016/07/why-fpkm-and-rpkm-are-wrong.html
基因共表达聚类分析及可视化(非常好,概述)
https://blog.csdn.net/qazplm12_3/article/details/78904744
https://www.jianshu.com/p/f899312ee01d(聚类概述,R)
DESeq2
http://www.bioinfo-scrounger.com/archives/113
https://www.jianshu.com/p/3bfb21d24b74 (简书)
http://www.360doc.com/content/16/0804/08/26456292_580656574.shtml (rlg标准化)
http://www.360doc.com/content/16/0804/08/26456292_580656102.shtml(limma)
http://scu.zju.edu.cn/redir.php?catalog_id=58400&object_id=162638 (详细)
http://scu.zju.edu.cn/redir.php?catalog_id=58400&object_id=202797(#DESeq2包做富集分析)
https://www.jianshu.com/p/6d385b729b27(从原始数据到可视化,非常好!)
富集分析
https://www.jianshu.com/p/5a4bda169247(概述与比较)
KEGG数据下载与处理
http://www.oebiotech.com/Article/smkeggsjnj.html(辅助ReCiPa R包)
mirpath miRNA富集分析
差异表达概述(非常好,讲了阈值的含义)
https://www.jianshu.com/p/b55276e46f0c
http://www.yunbios.net/Differential-Expression-Analysis.html(差异表达分析,支持edgeR、DESeq2、limma)
http://www.freesion.com/article/752576024/(三种比较)
http://blog.sciencenet.cn/blog-3377724-1095665.html(count FPKM 用途)
https://blog.csdn.net/weixin_30657541/article/details/97068082(edgeR,过滤)
https://www.cnblogs.com/timeisbiggestboss/p/7190938.html(edgeR)
使用R处理GEO基因表达数据
https://www.jianshu.com/p/6f9f40b516f0
基因表达数据处理:Raw2FPKM
https://blog.csdn.net/guomutian911/article/details/78154840
差异表达结果怎么看
http://www.360doc.com/content/16/1214/11/19913717_614583481.shtml
https://www.jianshu.com/p/b55276e46f0c
count与FPKM
http://www.omicshare.com/forum/thread-762-1-1.html
https://blog.csdn.net/weixin_30512785/article/details/96585643(DEseq2 直接count均一化)
https://www.jianshu.com/p/5f94ae79f298
http://www.360doc.com/content/19/1224/14/68068867_881789451.shtml (DEseq2标准化详解)
https://www.bioinfo-scrounger.com/archives/111/ (DEaeq不是2)
https://www.jianshu.com/p/f685149ea247 (contrast顺序)
R根据列名提取
https://www.cnblogs.com/raisok/p/11089646.html
Web of Science 数据库导出记录中各个字段的含义
https://blog.csdn.net/qq_36215315/article/details/103097152
limma包做差异表达分析
https://www.plob.org/article/9966.html
https://blog.csdn.net/tuanzide5233/article/details/83541443
转录组的高级分析前该如何标准化数据?
http://www.360doc.com/content/17/1208/14/49848843_711247413.shtml
ID转换文件介绍
http://chuansong.me/n/1551007052174
http://www.360doc.com/content/16/0804/08/26456292_580657420.shtml (各种R包)
数据库R包org.Hs.eg.db(和merge结果会有差异)
http://www.360doc.com/content/16/0804/08/26456292_580659335.shtml
https://www.cnblogs.com/yatouhetademao/p/6817824.html (select函数)
使用annotate包注释芯片
https://www.jianshu.com/p/0695a6a3c51f
https://www.cnblogs.com/raisok/p/10836339.html(*****)
https://shengxin.ren/article/97(网站汇总*****)
ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/GENE_INFO/Mammalia/Homo_sapiens.gene_info.gz
JAVA创建
http://www.oracle.com/technetwork/java/javase/downloads/index.html
JDK:JAVA_HOME(注意路径)
JRE: Path
linux特殊符号
http://scu.zju.edu.cn/redir.php?catalog_id=58400&object_id=209336
STRING的应用
http://www.bio-info-trainee.com/1589.html
Htseq(python)count提取
https://www.jianshu.com/p/6932c72aba63
RNA-seq回贴与组装
https://www.cnblogs.com/leezx/p/5704047.html
NCBI注释下载
ftp://ftp.ncbi.nlm.nih.gov/gene/DATA
Genecode注释下载
https://www.gencodegenes.org/releases/current.html
Gene type的分类说明
http://www.pinlue.com/article/2018/09/1520/497200298153.html
igraph画图(学不会,放弃)
http://www.bio-info-trainee.com/2082.html
https://www.cnblogs.com/zidiancao/p/3937120.html
Cytoscape
http://www.bio-info-trainee.com/2053.html(扫盲)
http://manual.cytoscape.org/en/stable/Styles.html(官方使用手册,炫酷)
https://shengxin.ren/article/161(美化)
https://www.jianshu.com/p/5a790c223dee (数据导入设置※)
http://blog.sina.com.cn/s/bolg_7ed9e1310102wspp.html(布局与修改颜色)
http://blog.sina.com.cn/s/bolg_5d188bc40102vdtd.html(控制节点颜色)
https://shengxin.ren/article/376(筛选hub gene)
https://blog.csdn.net/woodcorpse/article/details/82739825(带饼图或条图的网络,应用bypass和slect,以及AI或PS)
https://www.sohu.com/a/200098300_652735(根据中心性选择hub gene)
http://www.doc88.com/p-6793970636907.html(拓扑结构介绍)
http://www.jintiankansha.me/t/kRWuOwYpu8(大全)
http://blog.sina.com.cn/s/blog_18600b4880102ydkc.html(layout)
RGB配色表
http://www.wahart.com.hk/rgb.htm
sci文章用图修改与排版规则
https://blog.csdn.net/qazplm12_3/articale/details/7848642
https://www.sohu.com/a/228711352_307557 (期刊要求)
R包读取excel数据
https://blog.csdn.net/esa_dsq/article/details/65003304
R包查询
http://www.omicsclass.com/article/517
置换检验(permutation test:当样本量足够多时,样本发生的频率近似于概率。)
https://blog.csdn.net/wukong1981/article/details/72820049?readlog(概论)
http://blog.sina.com.cn/s/blog_5cd2f1e2010192kj.html(perm包)
https://www.jianshu.com/p/ce84cd89f67d(Deducer包)
遗传学补课
http://blog.sina.com.cn/s/blog_59024b7d0102w4sm.html (rare mutation/common mutation)
预测基因间相互作用
http://www.sohu.com/a/137672913_177233
RIP实验技术
https://wenku.baidu.com/view/a42bc037f705cc17542709c7.html
WGS
http://www.360doc.com/content/18/0430/17/53115266_750031817.shtml
http://www.360doc.com/content/18/0208/11/19913717_728563847.shtml
https://www.biomart.cn/news/10/2855654.htm(tools)
http://blog.sina.com.cn/s/blog_165162de60102xmdz.html(tools)
https://zhuanlan.zhihu.com/p/54077965 (知乎)
https://www.plob.org/article/11652.html(历史简介)
lncRNA
https://www.sohu.com/a/224346923_653813(A基因通过B基因/信号通路在C疾病中发挥D功能)
lncRNA引物设计
http://www.360doc.com/content/17/0825/22/33204118_682144708.shtml(引物设计)
lncRNA数据库
http://www.bio-info-trainee.com/2927.html
lncRNA差异表达原因
http://www.360doc.com/content/18/0325/17/53579289_740098364.shtml
lncRNA2017盘点
http://www.360doc.com/content/17/1214/19/45962007_713114566.shtml
机器学习扫盲
http://www.360doc.com/content/17/0604/01/40628179_659684706.shtml(概述)
https://blog.csdn.net/kiss__soul/article/details/81625275(分类、回归、聚类、降维的区别)
https://www.csdn.net/gather_20/MtTacg5sOTg3Ni1ibG9n.html
https://www.jianshu.com/p/58b276f7e7fd(3Dtsne绘图)
python机器学习库sklearn——交叉验证(K折、留一、留p、随机)
https://blog.csdn.net/luanpeng825485697/article/details/79836262
https://blog.csdn.net/light_blue_love/article/details/41794215 (留一)
lasso回归和岭回归
https://blog.csdn.net/JH_Zhai/article/details/82694937
判别分析的R实现
https://wenku.baidu.com/view/689633f924c52cc58bd63186bceb19e8b9f6ec2d.html(原理)
http://www.doc88.com/p-1137288773501.html
https://www.cnblogs.com/Ricepig/p/LDA.html (安装说明)
https://wenku.baidu.com/view/51f4fc1430126edb6f1aff00bed5b9f3f80f7273.html
逐步判别分析方法与判据的选择
https://max.book118.com/html/2017/0717/122615190.shtm
https://wenku.baidu.com/view/ba3c738c680203d8ce2f24e4.html
线性判别分析的原理简介&Python与R实现
https://cloud.tencent.com/developer/article/1099252
线性判别分析LDA原理总结
https://www.cnblogs.com/pinard/p/6244265.html
用scikit-learn进行LDA降维
https://www.cnblogs.com/vivianzy1985/p/9208505.html
LDA降维与分类
https://blog.csdn.net/jie310600/article/details/84926693
LDA降维与PCA的区别
https://blog.csdn.net/ainimao6666/article/details/64933677
R语言逻辑回归、ROC曲线和十折交叉验证
https://blog.csdn.net/Tiaaaaa/article/details/58116346
R语言多重共线性判别
http://www.mamicode.com/info-detail-1557739.html
支持向量机扫盲
https://blog.csdn.net/b285795298/article/details/81977271
https://www.zhihu.com/question/26768865?sort=created
http://blog.sina.com.cn/s/blog_6ab063770102vwup.html(核函数的选择)
https://wenku.baidu.com/view/9378da89be1e650e53ea9941.html
https://www.cnblogs.com/volcao/p/9465214.html
https://blog.csdn.net/dengheCSDN/article/details/78109253?locationNum=2&fps=1
https://www.jianshu.com/p/0a24eafda4ff(SVM 的核函数选择和调参)
http://www.sohu.com/a/303234946_777125(lass)
https://www.cnblogs.com/xiaojikuaipao/p/7126076.html(lasso)
https://blog.csdn.net/qll125596718/article/details/6910921(松弛变量)
https://blog.csdn.net/xgl112112/article/details/60321413(正则化)
https://www.jianshu.com/p/4bad38fe07e6(L2范数)
https://www.cnblogs.com/zhizhan/p/4629432.html(VC维与结构风险)
主成分分析(PCA)原理总结
https://www.cnblogs.com/pinard/p/6239403.html
K均值聚类
https://blog.csdn.net/alicelmx/article/details/80991870(选择K)
https://www.jianshu.com/p/743cf2357b28(LG RF SVM)
分类器的选择
http://i.dataguru.cn/mportal.php?aid=11360&mod=view(有监督学习选择深度学习还是随机森林或支持向量机?)
随机森林
https://blog.csdn.net/yawei_liu1688/article/details/78891050(R实现)
http://www.360doc.com/content/17/0829/00/33459258_682897658.shtml
https://www.cnblogs.com/iupoint/p/10175090.html(进度条,k折交叉验证)
http://blog.sciencenet.cn/home.php?mod=space&uid=3406804&do=blog&id=1158196(带可视化和交叉验证)
https://blog.csdn.net/HHTNAN/article/details/54580747(R实现)
https://blog.csdn.net/weixin_43216017/article/details/87887334(简易版)
https://blog.csdn.net/t15600624671/article/details/76515033(超详细讲解代码)
https://blog.csdn.net/qq_35040963/article/details/88832030(网格搜索法调参)
R包介绍(机器学习等多种)
https://blog.csdn.net/mjk/article/details/6229697
网格搜索和调参
https://blog.csdn.net/cymy001/article/details/78578665
https://www.cnblogs.com/aibbtcom/p/8548486.html(各种验证方式)
https://blog.csdn.net/weixin_40604987/article/details/79691752
https://www.cnblogs.com/aibbtcom/p/8548484.html
https://blog.csdn.net/winycg/article/details/80358567
https://blog.csdn.net/qysh123/article/details/80063447(自动化调参详解)
https://blog.csdn.net/cherdw/article/details/54970366(*****)
https://blog.csdn.net/baidu_15113429/article/details/72673466(*****)
https://blog.csdn.net/reallyr/article/details/87016298
https://baike.baidu.com/item/F1%E5%88%86%E6%95%B0/13864979?fr=aladdin(F1 score)
http://blog.sina.com.cn/s/blog_6a41348f0101ep7w.html(C和G的选择,很好)
ROC曲线以及评估指标F1-Score, recall, precision
https://blog.csdn.net/csqazwsxedc/article/details/51509808
https://blog.csdn.net/Quincuntial/article/details/69596456
https://blog.csdn.net/quiet_girl/article/details/70830796
https://blog.csdn.net/reallyr/article/details/87016298
Python机器学习库sklearn.model_selection模块的几个方法参数(非常好)
https://blog.csdn.net/cymy001/article/details/79078470
https://scikit-learn.org/stable/modules/svm.html
python机器学习库sklearn
http://www.dengb.com/rgznjc/1312678.html
Scikit-learn实例之理解SVM正则化系数C
https://blog.csdn.net/mingtian715/article/details/54574700
特征选择:递归特征消除与LassoCV
https://www.cnblogs.com/gczr/p/6802948.html(python)
https://www.jianshu.com/p/8d42df933070
https://www.zybuluo.com/Macux/note/181285(R lasso*****)
外泌体总结
http://www.sohu.com/a/168249466_390793
高通量测序质量解读
http://www.360doc.com/content/19/0424/16/15294469_831161186.shtml(特征缩放术语混淆)
https://wenku.baidu.com/view/a5f2c8157f21af45b307e87101f69e314232fa62.html
http://www.360doc.com/content/16/0909/20/19913717_589635518.shtml(基因组转录组区别)
http://www.biotrainee.com/thread-2789-1-1.html(生物学重复和技术重复)
https://www.jianshu.com/p/0f5a9616efe2(Read count CPM RPKM)
http://www.360doc.com/content/18/1218/18/47588191_802708524.shtml(RNA-seq常用图和read count)RNA丰度:一种特定的mRNA在某个细胞中的平均分子
RNA-seq项目设计:生物学重复和单个样本测序量对结果的影响
https://www.jianshu.com/p/5a21b218b366
RNA-seq层次聚类
https://www.bbsmax.com/A/WpdKV7k15V/(python)
https://www.jianshu.com/p/adea91ac59d8(R)
聚类热图包
https://www.sohu.com/a/210713199_688647(十种方法)
https://blog.csdn.net/lalaxumelala/article/details/86022722
http://blog.sina.com.cn/s/blog_4a0824490102v7aa.html(自定义颜色)
随机森林和套索算法的特征筛选
http://m.sohu.com/a/303234946_777125(LASSO,R)
https://blog.csdn.net/lightsupw/article/details/80916384(RF,python)
https://www.sohu.com/a/122101031_572440(RF,R)
http://www.doc88.com/p-0923201614591.html(各自优劣)
特征选择
https://www.jianshu.com/p/009a86ad55a0
https://blog.csdn.net/u013524655/article/details/41078911(两种R包比较)
https://www.sohu.com/a/325884447_466874 (翻译)
http://wap.sciencenet.cn/blog-3406804-1158196.html(完整随机森林R实现*****)
set.seed()函数的意义以及用法
https://blog.csdn.net/vencent_cy/article/details/50350020
R + python︱数据规范化、归一化、Z-Score
https://blog.csdn.net/Castlehe/article/details/88988267
https://blog.csdn.net/sinat_33761963/article/details/53433799(代码)
https://blog.csdn.net/sinat_26917383/article/details/51228217
https://blog.csdn.net/chixujohnny/article/details/54231815(scale normal 为做图好看)
什么时候用归一化?什么时候用标准化?https://www.jianshu.com/p/95a8f035c86c
(1)如果对输出结果范围有要求,用归一化。
(2)如果数据较为稳定,不存在极端的最大最小值,用归一化。
(3)如果数据存在异常值和较多噪音,用标准化,可以间接通过中心化避免异常值和极端值的影响。
个人经验:建议优先使用标准。对于输出有要求时再尝试别的方法,如归一化或者更加复杂的方法。
https://blog.csdn.net/qq_40304090/article/details/90597892(一步和逐步标准化区别)
不同版本的R
https://cran.r-project.org/bin/windows/base/old/
R字符串处理
https://www.bbsmax.com/A/D854jnnQzE/
http://blog.sina.com.cn/s/blog_7147f6870102whcl.html
缺失值处理(R)
https://blog.csdn.net/sadfasdgaaaasdfa/article/details/44595309
https://blog.csdn.net/qq_29462849/article/details/80647999(数据缺失类型)
https://blog.csdn.net/carlwu/article/details/75645092(缺失数据可视化)
http://blog.sina.com.cn/s/blog_99dc1f0a0102w790.html(VIM mice包)
https://www.cnblogs.com/feffery/p/10914486.html(marginplot)
https://www.jianshu.com/p/442697e91516(多重插补)
http://www.sohu.com/a/235232488_274950
数据切分
https://blog.csdn.net/qq_16365849/article/details/52734139
https://blog.csdn.net/chandelierds/article/details/83245221(数据划分与cross validation)
https://www.cnblogs.com/Hyacinth-Yuan/p/8289385.html(caret包参数说明)
交叉验证的一些方法
https://www.cnblogs.com/D2016/p/6921005.html
凸包算法
https://stats.stackexchange.com/questions/11919/convex-hull-in-r(R实现)
http://www.doc88.com/p-7394513613827.html
http://www.twinklingstar.cn/category/computational-geometry/8-%E5%87%B8%E5%8C%85/(综述)
GSEA富集分析(路径从头到尾不能有中文)
https://blog.csdn.net/qazplm12_3/article/details/83474140(详细步骤)
https://www.omicsclass.com/article/186(格式说明)
https://www.cnblogs.com/jessepeng/p/9555804.html(结果:NES绝对值≧ 1.0,NOM p-val ≦ 0.05,FDR q-val ≦ 0.25是有意义的基因集合)
https://baijiahao.baidu.com/s?id=1647547246944679438&wfr=spider&for=pc
https://blog.csdn.net/weixin_43569478/article/details/83745105(输入表达矩阵分组,基因fc排列)
http://www.360doc.com/content/19/1124/09/33037066_875109328.shtml
外泌体提取
https://www.exosomemed.com/893.html
逻辑回归
https://www.cnblogs.com/nxld/p/6170690.html
https://www.cnblogs.com/Hyacinth-Yuan/p/7905855.html(R)
KNN算法
https://www.jianshu.com/p/c37d9b0b6052(非常好:3种R包)
https://blog.csdn.net/Chenyukuai6625/article/details/73612440
https://blog.csdn.net/bigdata_wang/article/details/44139125
https://blog.csdn.net/zrh_CSDN/article/details/80878842(KNN的选择)
R语言正则化
https://blog.csdn.net/u011801891/article/details/55274809(l1范数(lasso)、l2范数(岭回归))
https://blog.csdn.net/wangqi1113/article/details/80204956
https://blog.csdn.net/wildwind0907/article/details/86735474
http://blog.sina.com.cn/s/blog_e799ef7e0101fujn.html(cv.glmnet()glmnet())
降维概述
https://yq.aliyun.com/articles/70733(t-sne)
https://blog.csdn.net/Flyingzhan/article/details/79521765
特征筛选(随机森林,袋外误差OOB)
https://blog.csdn.net/wishchin/article/details/52515516
R apply、lapply、sapply、mapply、tapply函数详解
https://blog.csdn.net/u014543416/article/details/79037389
apply系列函数学习
http://scu.zju.edu.cn/redir.php?catalog_id=58400&object_id=180064
数据分析tapply
http://scu.zju.edu.cn/redir.php?catalog_id=58400&object_id=162298
数据分析:交并集,重复处理
http://scu.zju.edu.cn/redir.php?catalog_id=58400&object_id=162023
3D转换图包
https://cloud.tencent.com/developer/article/1468704
屏蔽360
https://jingyan.baidu.com/article/95c9d20da98845ec4f756162.html
circRNA
http://www.sohu.com/a/68776974_390793
http://www.sohu.com/a/245920746_769248
http://www.360doc.com/content/18/0909/19/19913717_785211749.shtml(芯片)
可变剪接
https://www.jianshu.com/p/759a5a714aa3
转录组扫盲
https://www.jianshu.com/p/f6ed62416686
https://www.jianshu.com/p/1505fa220ce4(数据处理)
http://www.bio-info-trainee.com/244.html(count)
https://blog.csdn.net/u012110870/article/details/102804307(raw count标准化原则*****)
转录组思路
https://m.baidu.com/sf?pd=realtime_article&openapi=1&dispName=iphone&from_sf=1&resource_id=4584&word=%E8%BD%AC%E5%BD%95%E7%BB%84%E6%B5%8B%E5%BA%8F+mRNA+miRNA&keysign=http%3A%2F%2Fwww.sohu.com%2Fa%2F192990065_99971433&source=www_normal_a&fks=1b2fbd&top=%7B%22sfhs%22%3A1%7D&title=%E8%BD%AC%E5%BD%95%E7%BB%84%E6%B5%8B%E5%BA%8F%20mRNA%20miRNA&lid=10718925662695254130&referlid=10718925662695254130&ms=1&frsrcid=1599&frorder=1
http://www.sohu.com/a/192990065_99971433
处理GEO
https://www.jianshu.com/p/6f9f40b516f0
https://www.jianshu.com/p/9a64dced5b2a
外泌体与神经系统疾病
http://www.sohu.com/a/150973486_464200
https://www.exosomemed.com/3791.html(被根神经节-慢性疼痛)
excel快速计算年龄
=DATEDIF(K58,L58,"y")&"岁"&DATEDIF(K58,L58,"ym")&"月"&DATEDIF(K58,L58,"md")&"天"
差异表达(芯片和RNAseq处理差异)
https://www.jianshu.com/p/b55276e46f0c
https://www.jianshu.com/p/de98164c3141(从sra)
https://www.jianshu.com/p/41a6c6508adf(不错的解读)
http://www.dxy.cn/bbs/topic/34064676?sf=2&dn=4(EBseq)
https://www.wandouip.com/t5i20362/(报错)
https://blog.csdn.net/enyayang/article/details/98176566
RSEM和RPKM两种数据处理方法有区别,但我一般直接用TCGA给的RSEM;对数据取log2(*+1),数据分布就非常类似基因芯片了。
许多其他研究也采用这中方法。要得到基因上下调,就要进行差异表达分析,那就是另外一回事了。
一抗二抗的选择
https://wenku.baidu.com/view/cd141ef4f61fb7360b4c65d1.html
WB步骤
https://wenku.baidu.com/view/133c8d66f011f18583d049649b6648d7c1c70887.html(BCA)
https://wenku.baidu.com/view/61be9b195e0e7cd184254b35eefdc8d376ee14ef.html
https://www.sohu.com/a/278602111_177233
调整年龄和性别
https://www.jianshu.com/p/2634d0cbd0ca
正态分布检验
https://www.it610.com/article/2580278.htm
perl表达矩阵处理
https://www.jianshu.com/p/17a1d9c256c2
UCSCXenaTools包用法介绍——搜索与下载TCGA、GDC、ICGC等公开数据库数据集
https://shengxin.ren/article/397
lncRNA预测
https://www.douban.com/note/666292911/
https://cloud.tencent.com/developer/news/386861
https://www.docin.com/p-526245550.html(分析方法综述,中文,讲了标准化方法)
http://www.360doc.com/content/17/0109/22/39751229_621403934.shtml(编码能力预测)
http://www.360doc.com/content/16/0808/10/19913717_581620155.shtml
http://www.360doc.com/content/16/1111/12/19913717_605626019.shtml
microRNA作用方式是通过结合mRNA来抑制翻译或者促进降解实现的,发生在转录后水平;
但是lncRNA就太复杂了,因此有关于lncRNA作用模式的多种说法,比如顺式(cis)和反式(trans)之分,
比如Signal,Decoy,Duide,Scaffold,
也可以根据lncRNA与不同的分子分为DNA、RNA和蛋白,总体上包括了转录和转录后水平。
P值校正简介(FDR)
https://www.jianshu.com/p/7436db3b62b4
ceRNA网络构建
http://www.360doc.com/content/18/1226/13/52645714_804579327.shtml
https://www.jianshu.com/p/3f440177db46
http://www.hzrna.com/4509.html
miR下游预测
http://www.bio-info-trainee.com/1719.html(提到一个新R包)
无参转录组RNAseq分析/WES(七)看de novo变异情况
http://www.bio-info-trainee.com/tag/de-novo
转录调控
http://www.sohu.com/a/221919998_652735
罕见变异常见变异
https://www.docin.com/p-869320712.html
混合效应模型lme
http://www.sohu.com/a/292709912_274950
https://zhuanlan.zhihu.com/p/49480686
http://www.doc88.com/p-5877404057484.html(RNAseq)
https://zhuanlan.zhihu.com/p/32006859
http://www.matools.com/blog/190430887
https://www.sohu.com/a/115465771_466874(***)
线性模型(Logistics回归)
https://zhuanlan.zhihu.com/p/21710196(嵌套模型选择)
R语言try错误识别
https://blog.csdn.net/YJJ18636810884/article/details/83176190
https://www.jianshu.com/p/759d31b371bf
根据表达量筛选探针后,对主成分分析的PCA图有什么影响
https://www.jianshu.com/p/dd4e842b6707(***)
https://www.jianshu.com/p/f4b618354dc2
推荐在统计检验前过滤表达量低,也就如果一个基因在所有样本中count均低于某一阀值,请在分析前剔除。这个阀值也是约定俗成,一般设置为3.
卡方检验
https://www.jianshu.com/p/bb0bd72bc428
https://www.cnblogs.com/yuanzhoulvpi/p/8387019.html(列联表)
高效R包
http://blog.sciencenet.cn/home.php?mod=space&uid=1271266&do=blog&id=968772
https://www.jianshu.com/p/bb435002251d
TCGA数据下载预处理
https://www.jianshu.com/p/00f6ed2d5cff(R)
https://blog.csdn.net/weixin_42512684/article/details/89415482(在线)
https://blog.csdn.net/herokoking/article/details/78980085
https://blog.csdn.net/qq_35203425/article/details/80882988(gdc安装)
http://3g.dxy.cn/bbs/topic/42048765?sf=2&dn=4
https://www.bioinfo-scrounger.com/archives/317/(总结)
https://shengxin.ren/article/27(简易版)
https://www.jianshu.com/p/73363a33c3bc(下载后数据整理)
环境变量配置是在系统变量里和网上不一致,cmd->gdc-client -h -m
m6A甲基化
https://blog.csdn.net/AIPuFu/article/details/100821644(工具)
https://www.sohu.com/a/251171553_464200(基础知识)
https://www.jianshu.com/p/3bd1feb0a4ff(扫盲,特别好*****)
ChAMP 包分析甲基化数据
https://www.jianshu.com/p/7993b890e4f3(R包)
b站的机器学习教程
机器学习(Machine Learning)- 吴恩达(Andrew Ng)
https://www.bilibili.com/video/av9912938/?p=1
李宏毅机器学习(2017)
https://www.bilibili.com/video/av10590361?from=search&seid=6875117190981152608
Python教程_600集Python从入门到精通教程 (前100Linux基础)
https://www.bilibili.com/video/av14184325/?p=1
交互式图表
https://www.jianshu.com/p/67c6b0132892(Bokeh 可视化)
https://blog.csdn.net/tankloverainbow/article/details/80442289
https://blog.csdn.net/weixin_44208569/article/details/98068947(python绘图库总结,*****推荐)
Github介绍
https://www.yangzhiping.com/tech/github.html
python数据替换
https://www.runoob.com/python/att-string-replace.html
python统计入门
TPM标准化
https://blog.csdn.net/herokoking/article/details/78790938(公式)
https://www.bioinfo-scrounger.com/archives/342/(FPKM)
批次效应
https://www.dxy.cn/bbs/newweb/pc/post/37426943?from=recommend
https://www.plob.org/article/14410.html
https://cloud.tencent.com/developer/article/1518682
https://shengxin.ren/question/10(******)
AUC
http://www.dataguru.cn/article-12379-1.html
https://blog.csdn.net/qq_29423387/article/details/87911526(比较)
https://www.jianshu.com/p/8d3716bf2e9b(*****)
https://blog.csdn.net/sunflower_sara/article/details/81214897 (各指标计算)
http://www.sohu.com/a/277402356_324765(灵敏度特异度在线)
https://www.jianshu.com/p/c4f740b0939b(proc*****)
https://www.mediecogroup.com/method_topic_article_detail/297/?ty=methods(截断值解释)
miR网站下游分析
http://www.360doc.com/content/18/0220/22/47873863_731092035.shtml
RNA-seq上游流程sra→fasq→bam→count
https://www.jianshu.com/p/9639bfa86543
https://www.jianshu.com/p/c78b8719e81b(sra→fasq→bam→count 需要linux和R)
https://www.bilibili.com/video/av28453557(视频教程)
https://zhuanlan.zhihu.com/p/77876265
大脑翻译汇编
https://wenku.baidu.com/view/ca6c7974b52acfc788ebc925.html
https://wenku.baidu.com/view/1772ad7f02d276a201292e45.html(详细功能分区)
一般英文文献对Kernel有两种提法,一是Kernel Function,二是Kernel Trick。
svm四类核函数:9 种核函数以及它们的用处和公式,常用的为其中的前四个:linear,Polynomial,RBF,Sigmoid
https://www.imooc.com/article/49276
hg19和hg38
https://cloud.tencent.com/developer/article/1424598(转录组基因组)
mirdeep2使用
https://www.jianshu.com/p/2f8d39760e5e (mapper.pl、miRDeep2.pl)
https://www.jianshu.com/p/ebf162ae5690 (quantifier.pl)
参考基因组注释及比对
https://www.jianshu.com/p/75404f813e0a
https://www.cnblogs.com/jessepeng/p/9681749.html
https://blog.csdn.net/L_yivs/article/details/80799366?utm_source=blogxgwz5(基因组和注释文件下载)
https://www.jianshu.com/p/348eca15fb03(排序、index文件)
https://www.jianshu.com/p/48b5a0972301 (GFF和GTF,数据结构)
sra到fastq格式转换并进行质量控制
https://www.jianshu.com/p/bc03e81f29aa(*****python linux?)
参考转录组RNAseq分析Kallisto
https://www.jianshu.com/p/4601374fbb9f
R语言utf8各种问题解决
https://blog.csdn.net/snowdroptulip/article/details/78806793
KNN和SVM的区别
https://blog.csdn.net/nineship/article/details/88200905
https://blog.csdn.net/weixin_42864175/article/details/88755913 (SVM,决策树,随机森林知识点整理)
https://blog.csdn.net/qq_34106574/article/details/82016442
https://blog.csdn.net/wargames_dc/article/details/89235746
灵敏度 特异度 比较)
https://www.sohu.com/a/213439666_489312
R语言机器学习之核心包kernlab
https://www.ikddm.com/3125.html/
模拟多分类的支持向量分类
https://blog.csdn.net/buracag_mc/article/details/76408155
随机森林优劣的详细解释
https://blog.csdn.net/keepreder/article/details/47273297 (*****)
https://blog.csdn.net/qq_38984677/article/details/88627572
knn超参数选择,python
https://www.cnblogs.com/xufangming/articles/9046171.html
https://www.cnblogs.com/baochuan/p/9756791.html(讲解优缺点比较特别好,对k值的理解)
ggpubr 画图(顶级CNS)
http://blog.sciencenet.cn/blog-3334560-1091714.html(python)
https://blog.csdn.net/qq_25055921/article/details/99705180(R)