匈牙利法

匈牙利法

匈牙利法是一件大的事物若除去一件小的事物,对这件事没有多大影响。1955年,库恩(W.W.Kuhn)利用匈牙利数学家康尼格(D.Konig)的关于矩阵中独立“0”元素的定理,提出了求解指派问题的一种方法,习惯上称之为匈牙利法。

理论基础

(1)若从效率矩阵(cij)的行(或列)的各元素中分别减去该行(或列)的最小元素后得到一个新矩阵(bij),则以(bij)为效率矩阵的指派问题与原问题有相同的最优解。

经过上述变换后,(bij)中的每行和每列都至少含有一个0元素,称位于不同行不同列的0元素为独立的0元素。

(2)若(bij)有n个独立的0元素,由此可得一个解矩阵,方法为在X中令对应于(bij)的0元素位置的元素为1,其它位置的元素为0,则X为指派问题的最优解。

(3)矩阵中独立0元素的最多个数等于能覆盖所有0元素的最少直线数。

算法步骤

匈牙利法的算法步骤如下:

(1)对指派问题的系数矩阵进行变换,使每行每列至少有一个元素为“0”.

①让系数矩阵的每行元素去减去该行的最小元素;

②再让系数矩阵的每列元素减去该列的最小元素。

(2)从第一行开始,若该行只有一个零元素,就对这个零元素加括号,对加括号的零元素所在的列画一条线覆盖该列,若该行没有零元素或者有两个以上零元素(已划去的不算在内),则转下一行,依次进行到最后一行。

(3)从第一列开始,若该列只有一个零元素。就对这个零元素加括号(同样不、考虑已划去的零元素)。再对加括号的零元素所在行画一条直线覆盖该列。若该列没有零元素或有两个以上零元素,则转下一列,依次进行到最后一列为止。

(4)重复上述步骤(1)和(2)可能出现3种情况:

①效率矩阵每行都有加括号的零元素,只要对应这些元素令

就找到了最优解。

②加括号的零元素个数少于m,但未被划去的零元素之间存在闭回路,这时顺着闭回路的走向,对每个间隔的零元素加一个括号,然后对所有加括号的零元素所在行(或列)画一条直线,同样得到最优解。

③矩阵中所有零元素或被划去,或加上括号.但加括号的零元素少于m,这时转入(5).

(5)按定理进行如下变换:

①从矩阵未被直线覆盖的数字中找出一个最小的k;

②当矩阵中的第i行有直线覆盖时,令Ui=0;无直线覆盖时。令Ui=K;

③当矩阵中的第j列有直线覆盖时,令Vj=-K;无直线覆盖时,令Vj=0;

④令原矩阵的每个元素Aij分别减去Ui和Vj.

(6)回到(2),反复进行,直到矩阵的每一行都有一个加括号的零元素为止。即找到最优分配方案。[1]

在实际的任务分配中,还可能出现人员(或设备)数与任务数不相等的情况,而且要求每个人员只先完成一件任务(在人员数少于任务数时),或者有些人员可暂不安排任务(在人员数多余任务数时),可称这样的问题为不平衡的指派问题,此时,可通过虚拟人员或虚拟任务使之转化为一般(平衡)的指派问题,即在原矩阵中增加一些行或者列,使之成为方阵,在极小型问题中所增加的元素应充分的大,如为原矩阵中最大的元素的值,而在极大型问题中增加的元素应足够的小。如可取零值。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,843评论 6 502
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,538评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,187评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,264评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,289评论 6 390
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,231评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,116评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,945评论 0 275
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,367评论 1 313
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,581评论 2 333
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,754评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,458评论 5 344
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,068评论 3 327
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,692评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,842评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,797评论 2 369
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,654评论 2 354

推荐阅读更多精彩内容