Clutter detection using the Gabella approach

#!/usr/bin/env python
# Copyright (c) 2016, wradlib developers.
# Distributed under the MIT License. See LICENSE.txt for more info.
# 引用wradlib 雷达数据处理库函数- 学习......
"""
Clutter Identification 地物杂波识别
^^^^^^^^^^^^^^^^^^^^^^

.. autosummary::
   :nosignatures:
   :toctree: generated/

   filter_gabella
   filter_gabella_a   对应step1
   filter_gabella_b   对应step2

"""
import numpy as np
import scipy.ndimage as ndi
from . import dp as dp
from . import util as util


def filter_gabella_a(img, wsize, tr1, cartesian=False, radial=False):
    r"""First part of the Gabella filter looking for large reflectivity
    gradients.

    This function checks for each pixel in `img` how many pixels surrounding
    it in a window of `wsize` are by `tr1` smaller than the central pixel.

    Parameters
    ----------
    img : array_like
        radar image to which the filter is to be applied
    wsize : int
        Size of the window surrounding the central pixel
    tr1 : float
        Threshold value   =  6dBZ
    cartesian : boolean
        Specify if the input grid is Cartesian or polar
    radial : boolean
        Specify if only radial information should be used

    Returns
    -------
    output : array_like
        an array with the same shape as `img`, containing the filter's results.

    See Also
    --------
    filter_gabella_b : the second part of the filter
    filter_gabella : the complete filter

    Examples
    --------

    See :ref:`notebooks/classify/wradlib_clutter_gabella_example.ipynb`.

    """
    nn = wsize // 2
    count = -np.ones(img.shape, dtype=int)
    range_shift = range(-nn, nn + 1)
    azimuth_shift = range(-nn, nn + 1)
    if radial:
        azimuth_shift = [0]
    for sa in azimuth_shift:
        refa = np.roll(img, sa, axis=0)
        for sr in range_shift:
            refr = np.roll(refa, sr, axis=1)
            count += (img - refr < tr1)(程序比较差值的美妙之处)
    count[:, 0:nn] = wsize ** 2
    count[:, -nn:] = wsize ** 2
    if cartesian:
        count[0:nn, :] = wsize ** 2
        count[-nn:, :] = wsize ** 2
    return count


def filter_gabella_b(img, thrs=0.):
    r"""Second part of the Gabella filter comparing area to circumference of
    contiguous echo regions.

    Parameters
    ----------
    img : array_like
    thrs : float
        Threshold below which the field values will be considered as no rain

    Returns
    -------
    output : array_like
        contains in each pixel the ratio between area and circumference of the
        meteorological echo it is assigned to or 0 for non precipitation
        pixels.

    See Also
    --------
    filter_gabella_a : the first part of the filter
    filter_gabella : the complete filter

    Examples
    --------

    See :ref:`notebooks/classify/wradlib_clutter_gabella_example.ipynb`.

    """
    conn = np.ones((3, 3))
    # create binary image of the rainfall field
    binimg = img > thrs
    # label objects (individual rain cells, so to say)
    labelimg, nlabels = ndi.label(binimg, conn)
    # erode the image, thus removing the 'boundary pixels'
    binimg_erode = ndi.binary_erosion(binimg, structure=conn)
    # determine the size of each object
    labelhist, edges = np.histogram(labelimg,
                                    bins=nlabels + 1,
                                    range=(-0.5, labelimg.max() + 0.5))
    # determine the size of the eroded objects
    erodelabelhist, edges = np.histogram(np.where(binimg_erode, labelimg, 0),
                                         bins=nlabels + 1,
                                         range=(-0.5, labelimg.max() + 0.5))
    # the boundary is the difference between these two
    boundarypixels = labelhist - erodelabelhist
    # now get the ratio between object size and boundary
    ratio = labelhist.astype(np.float32) / boundarypixels
    # assign it back to the objects
    # first get the indices
    indices = np.digitize(labelimg.ravel(), edges) - 1
    # then produce a new field with the ratios in the right place
    result = ratio[indices.ravel()].reshape(img.shape)

    return result


def filter_gabella(img, wsize=5, thrsnorain=0., tr1=6., n_p=6, tr2=1.3,
                   rm_nans=True, radial=False, cartesian=False):
    r"""Clutter identification filter developed by :cite:`Gabella2002`.

    This is a two-part identification algorithm using echo continuity and
    minimum echo area to distinguish between meteorological (rain) and non-
    meteorological echos (ground clutter etc.)

    Parameters
    ----------
    img : array_like
    wsize : int
        Size of the window surrounding the central pixel
    thrsnorain : float
    tr1 : float
    n_p : int
    tr2 : float
    rm_nans : boolean
        True replaces nans with Inf
        False takes nans into acount
    radial : boolean
        True to use radial information only in filter_gabella_a.
    cartesian : boolean
        True if cartesian data are used, polar assumed if False.

    Returns
    -------
    output : array
        boolean array with pixels identified as clutter set to True.

    See Also
    --------
    filter_gabella_a : the first part of the filter
    filter_gabella_b : the second part of the filter

    Examples
    --------

    See :ref:`notebooks/classify/wradlib_clutter_gabella_example.ipynb`.

    """
    bad = np.isnan(img)
    if rm_nans:
        img = img.copy()
        img[bad] = np.Inf
    ntr1 = filter_gabella_a(img, wsize, tr1, cartesian, radial)
    if not rm_nans:
        f_good = ndi.filters.uniform_filter((~bad).astype(float), size=wsize)
        f_good[f_good == 0] = 1e-10
        ntr1 = ntr1 / f_good
        ntr1[bad] = n_p
    clutter1 = (ntr1 < n_p)
    ratio = filter_gabella_b(img, thrsnorain)
    clutter2 = (np.abs(ratio) < tr2)
    return clutter1 | clutter2
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,185评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,445评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,684评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,564评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,681评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,874评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,025评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,761评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,217评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,545评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,694评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,351评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,988评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,778评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,007评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,427评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,580评论 2 349

推荐阅读更多精彩内容