python爬虫&可视化——小龙虾

前言:

上期与大家分享了一些旅游的内容,本期则分享一些为吃货们量身定制的文章,大家的好丽友——小龙虾

PART1:获得数据

本次数据我们爬取了大众点评中所有打上小龙虾标签的餐厅

从上图中可以看出,我们可以获得餐厅的人均消费、点评数量、推荐菜、评分(口味、环境、服务)等信息,用于我们之后的分析。我们此次总共爬取到了225个城市,6758个餐厅,121.3万条评论。

我们截取其中的部分核心代码:

def find_city_page(path):

   data = pd.read_excel(path)

   city_lobster_page = pd.DataFrame()

   driver = webdriver.Chrome()    

   for i in range(0,len(data)):

       try:

           js='window.open("'+data['city_lobster_url'][i]+'")'

           driver.execute_script(js)

           bsObj = BeautifulSoup(driver.page_source,'html.parser')

           bs = bsObj.find_all('a',attrs={'class':'PageLink'})

           this_city_lobster={'city_name':data['city_name'][i],

                              'page_num':max([int(l.text ) for l in bs])}

           city_lobster_page = city_lobster_page.append(this_city_lobster,ignore_index=True)

       except:

           continue

   return city_lobster_page

PART2: 城市对比

我们首先要进行分析的是各个城市的小龙虾热度,我们以带有“小龙虾”标签的餐厅评论总和作为最终的对比依据,得到的TOP20城市如下:

可以看出上海市的点评数遥遥领先,可能存在以下两个因素:a.上海市的小龙虾餐厅数量较多,本身存在较大的消费群体 b.大众点评总部在上海,上海的商户入驻数量较多。有兴趣的朋友可以进行更深一步的研究。

圈定了TOP20城市后,我们首先看一下TOP20城市小龙虾的人均消费

本人对于Python学习创建了一个小小的学习圈子,为各位提供了一个平台,大家一起来讨论学习Python。欢迎各位到来Python学习群:960410445一起讨论视频分享学习。Python是未来的发展方向,正在挑战我们的分析能力及对世界的认知方式,因此,我们与时俱进,迎接变化,并不断的成长,掌握Python核心技术,才是掌握真正的价值所在。

该项统计中,包邮区占据了靠前的位置,体现出来包邮区对小龙虾的热情和自身的消费水平。同时可以看到株洲的人均消费接近于上海的一半,有机会到湖南旅游的朋友可以考虑到株洲品尝物美价廉的小龙虾。

紧接着要看的是TOP20城市味道、环境、服务三部分的分数情况:

我们发现服务分与环境分排序相同,二者具有极强的相关性,符合通常认知。同时可以看到在三项分数中,北方的四个城市天津、西安、北京、青岛各项指标均处于靠前的位置,其中天津的服务和环境均处于首位。

结合下图全国小龙虾热力图,似乎有些有悖于大家的认知。

由此我们可以得出在小龙虾整体热度比较强的区域,人们对于小龙虾各方面的要求会相应提高,相反在整体热度偏低区域,人们评价时会相对宽容。同时我们看到海口的各项指标均处于最后一位,需要进行相应的调整。

PART3: 探索龙虾

我们看过了各个城市的情况后,进一步看一下小龙虾本身的一些有趣的内容,首先看一下龙虾的口味,我们选取了各个餐厅中带有龙虾的推荐菜,分词后获得TOP20的口味

十三香、蒜蓉、麻辣高居前三位,根据作者的经验,这基本上是符合大家整体口味的选择。TOP20中的蛋黄,白灼对于作者而言相对陌生,有品尝过的朋友可以分享一些这些口味的体验。

看完了口味,再看一下龙虾的好丽友



部分词云绘制代码如下:

# 解析小龙虾图片

back_color = imread('小龙虾.jpg')  # 解析该图片

# 参数配置

wc = WordCloud(background_color='white',  # 背景颜色

              max_words=300,  # 最大词数

              mask=back_color,  # 以该参数值作图绘制词云,这个参数不为空时,width和height会被忽略

              max_font_size=100,  # 显示字体的最大值

              font_path="C:/Windows/Fonts/simhei.ttf",  # 解决显示口字型乱码问题,可进入C:/Windows/Fonts/目录更换字体

              random_state=4,  # 为每个词返回一个PIL颜色

              #width=2000,  # 图片的宽

              #height=1860  #图片的长

              )

# 通过encounter计数器生成词云

wc.generate_from_frequencies(word_counts)

# 基于彩色图像生成相应彩色

image_colors = ImageColorGenerator(back_color)

# 绘制词云

plt.figure()

plt.imshow(wc.recolor(color_func=image_colors))

plt.axis('off')

PART5: 特(hei)色(an)龙虾

文章最后我们放上几个之前分词发现的特色口味龙虾,或许下一个网红龙虾就在其中

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,525评论 6 507
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,203评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,862评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,728评论 1 294
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,743评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,590评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,330评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,244评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,693评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,885评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,001评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,723评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,343评论 3 330
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,919评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,042评论 1 270
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,191评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,955评论 2 355

推荐阅读更多精彩内容