一、概念的由来:
在国内,中台最早是由阿里巴巴提出来的。在2015年年中的时候,马云去参观了一家芬兰的游戏公司,叫做Supercell。这家公司名字你也许不熟悉,但是他们开发的游戏你可能玩过,比如《部落冲突》。这家公司一年光是利润就有15亿美金,不过员工人数非常少,只有不到200个人,而且公司里每一个开发游戏的小团队,都只有六七个人而已。这么小规模的团队,怎么做成了这么大的业务呢?其中一个原因是他们把游戏开发过程中,要用的一些通用的游戏素材和算法整理出来,把这些作为工具提供给所有的小团队。同一套工具,可以支持好几个小团队研发游戏。
这种管理方式,就是一个“中台”的模型。
二、什么是数据中台?
一般来说,数据中台是指企业利用大数据技术,对内外部海量数据统一进行采集、计算、存储,并使用统一的数据规范进行管理,数据规范包括数据口径、数据模型、元数据规范、参考数据标准、主数据标准、业务规则等。更进一步,广义的数据中台,还包括企业长期积累下来与业务有较强关联性的一些技术组件,如业务标签,算法模型,数据产品等。数据中台的主要作用在于将企业内部所有数据统一处理形成标准化数据,挖掘出对企业最有价值的数据,构建企业数据资产库,对内对外提供一致的、高可用大数据服务。
三、数据中台模型(阿里数据中台模型):
阿里是数据中台概念的首先提出者,其案例更具分析意义。从网络中流传的一幅阿里巴巴数据中台全景图(图1)可以看出,阿里的数据中台包括了计算与存储平台、数据资产管理、智能数据研发、统一数据中心中间件(OneService)四大模块,最上层支撑着阿里数据、数据大屏、生意参谋等大数据应用。
阿里巴巴数据中台全景图
阿里的统一数据中心中间件又分为萃取数据中心、公共数据中心和垂直数据中心三部分,垂直数据中心负责从阿里旗下各个业务单元采集数据,公共数据中心类似数据仓库,将所有数据按不同主题域(电商、文娱、营销、物流、金融等)分类管理,萃取数据中心负责按照业务需求,将各主题域数据加工处理,建立起消费者、企业、内容、商品、位置五大数据体系。阿里数据中台的目的旨在对内提供数据基础建设和统一的数据服务,对外提供服务商家的统一化数据产品。
通过以上架构,可以看出,阿里提出的数据中台模式有以下一些特点。首先是对全域数据的采集与存储,实现了对企业中各业务类别数据的整合和集中化管理。其次是按照规范化的数据架构(数据仓库规划、数据模型构建、指标定义规范等)统一研发数据,实现数据口径、数据模型标准化。第三是建立业务需求驱动的几大数据体系,深度萃取数据价值;第四是集成数据资产管理能力,从数据的运营、应用、管理、分析、可视化五方面统一管理数据资产。
通过这样的数据中台架构设计,阿里实现了对下屏蔽各数据来源不同的现状,对上提供统一的数据服务接口和标准化数据。数据中台将阿里内部诸如淘宝、天猫、聚划算这些数据孤岛一一打通,将公共数据能力积累沉淀,对内对外提供数据共享服务,新的业务需求再出现的时候,开发人员不用再从头做起,直接基于数据中台提供的能力,就可以快速完成新应用开发。
四、被称为企业“变速齿轮”,数据中台三种服务
在这三种服务中,重点关注的是依赖于数据的服务,数据中台具有大数据分析能力,并将该能力通过接口服务等方式对外提供。这一点是数据中台与数据仓库的最大区别,数据仓库对外直接提供规整的数据分析能力,一般由BI工具或者大数据挖掘工具负责,而数据中台直接将数据封装成服务,以API等方式对外输出。数据中台原则上只提供通用的服务接口,个性化在业务层实现,简化上层业务使用,提升对业务需求的响应效率。
“数据中台”不是既有的专业术语,而是企业在持续思索“如何让数据产生更多价值”的过程中,演变成型的一种管理理念。数据中台并不是一个模板,不同的企业、不同的业务所需要的数据中台并不相同,技术部门需要和业务部门协调,从企业的业务需求出发构建与企业相匹配的一套数据应用的流程机制。同时企业也需要有前瞻性,考虑到业务未来的发展和丰富性,传统系统发展到数据中台时需要考虑到扩展性,灵活性。