准备知识
ThreadLocal:
首先要搞清楚ThreadLocal的作用是什么,然后再去看它的源码。ThreadLocal的作用是为了实现线程间的数据隔离。(分析源码就要分析为什么ThreadLocal能做到数据隔离,以及,它在Handler中起了什么作用?)
第一个问题: ThreadLocal是如何做到数据隔离的?
要搞清楚这个问题,首先我们追踪源码,看一下,ThreadLocal是怎么放置和取出数据的。
1.1 从ThreadLocal中取数据:get()
public T get() {
//拿到当前线程
Thread t = Thread.currentThread();
//拿到当前线程中的 ThreadLocalMap
ThreadLocalMap map = getMap(t);
//通过下面两步,追踪可以看到,map此时为空。
if (map != null) {
ThreadLocalMap.Entry e = map.getEntry(this);
if (e != null) {
@SuppressWarnings("unchecked")
T result = (T)e.value;
return result;
}
}
return setInitialValue();
}
点击进入源码发现这个方法首先是获取到当前的线程,然后拿到当前线程中的ThreadLocalMap。我们追踪其中的getMap(t):
ThreadLocalMap getMap(Thread t) {
return t.threadLocals;
}
返回的是threadLocals,这是Thread类中的一个全局变量。追踪进去可以看到:
Thread.java
ThreadLocal.ThreadLocalMap threadLocals = null;
threadLocals = null;
在Thread.java中,对这个全局变量的定义均为null。因此在get()中,map为空,会走到setInitialValue()中。我们继续追踪到setInitialValue()中。看看setInitialValue()在源码中如何实现的:
private T setInitialValue() {
T value = initialValue();
Thread t = Thread.currentThread();
ThreadLocalMap map = getMap(t);
if (map != null)
map.set(this, value);
else
createMap(t, value);
return value;
}
首先调用初始化方法initialValue(),得到value,如果用户重写了initialValue(),那么获得到就是用户定义的返回值。再往下走,得到的Map仍然是null,因此会走到createMap(t, value)中。继续追踪下去,看看createMap()是怎么实现的。
void createMap(Thread t, T firstValue) {
t.threadLocals = new ThreadLocalMap(this, firstValue);
}
在这个方法中,定义了threadLocals这个变量。创建了ThreadLocalMap。
1.2 往ThreadLocal中添加数据。set()
public void set(T value) {
Thread t = Thread.currentThread();
ThreadLocalMap map = getMap(t);
if (map != null)
map.set(this, value);
else
createMap(t, value);
}
仍然是这样:首先获取当前线程,再通过当前线程获取到 ThreadLocalMap,在之前通过对getMap(t)的分析可以知道,此时的map = null,因此set(t)最终也会走 createMap(t, value)。之前对 createMap(t, value)的源码进行分析过, createMap(t, value)会创建一个ThreadLocalMap,并将value放入ThreadLocalMap中。
看到这里,我们发现,ThreadLocal取数据和拿数据,都是通过一个叫做ThreadLocalMap的类,那么这个类到底是个啥呢?
阅读源码发现,ThreadLocalMap是ThreadLocal中的一个静态内部类:
static class ThreadLocalMap {
/**
* The entries in this hash map extend WeakReference, using
* its main ref field as the key (which is always a
* ThreadLocal object). Note that null keys (i.e. entry.get()
* == null) mean that the key is no longer referenced, so the
* entry can be expunged from table. Such entries are referred to
* as "stale entries" in the code that follows.
*/
static class Entry extends WeakReference<ThreadLocal<?>> {
/** The value associated with this ThreadLocal. */
Object value;
Entry(ThreadLocal<?> k, Object v) {
super(k);
value = v;
}
}
/**
* The initial capacity -- MUST be a power of two.
*/
private static final int INITIAL_CAPACITY = 16;
/**
* The table, resized as necessary.
* table.length MUST always be a power of two.
*/
private Entry[] table;
.......
这个静态内部类中,还有一个静态内部类,这个类叫做Entry,这个类比较简单,它其中维护了两个变量,分别是ThreadLocal类型的Key和Object类型的Value。在每个ThreadLocalMap中都有一个Entry[]数组,用来存储数据。
源码阅读到这里,再结合到上面分析的ThreadLocal源码中set()的实现:
if (map != null)
map.set(this, value);
这里的Map指的是ThreadLocalMap,追踪到ThreadLocalMap中的set()
/**
* Set the value associated with key.
*
* @param key the thread local object
* @param value the value to be set
*/
private void set(ThreadLocal<?> key, Object value) {
// We don't use a fast path as with get() because it is at
// least as common to use set() to create new entries as
// it is to replace existing ones, in which case, a fast
// path would fail more often than not.
Entry[] tab = table;
int len = tab.length;
int i = key.threadLocalHashCode & (len-1);
for (Entry e = tab[i];
e != null;
e = tab[i = nextIndex(i, len)]) {
ThreadLocal<?> k = e.get();
if (k == key) {
e.value = value;
return;
}
if (k == null) {
replaceStaleEntry(key, value, i);
return;
}
}
tab[i] = new Entry(key, value);
int sz = ++size;
if (!cleanSomeSlots(i, sz) && sz >= threshold)
rehash();
}
通过代码可以看到,ThreadLocalMap装数据的过程,就是把数据放入Entry中的过程,而Entry就是把当前的ThreadLocal作为Key值,用户要放入的值作为Value,存入Entry中。
那么,ThreadLocal是如何做到数据隔离的呢?
每个线程中有一个自己的ThreadLocalMap,这句话,看源码可以看出来,Thread的源码中有这样一句话:
/* ThreadLocal values pertaining to this thread. This map is maintained
* by the ThreadLocal class. */
ThreadLocal.ThreadLocalMap threadLocals = null;
在Thread中,threadLocals是null的,它是在哪里被赋值的呢? 答案是在ThreadLocal中被赋值的。我们上面分析ThreadLocal的set()和get()的源码可以知道,当我们在ThreadLocal中set()或者get()时,如果初始值为空,或者要get()的值为空,都会判断ThreadLocalMap是否为空,如果ThreadLocalMap为空,会走到createMap中,而createMap的源码:
/**
* Create the map associated with a ThreadLocal. Overridden in
* InheritableThreadLocal.
*
* @param t the current thread 在前面的代码中: Thread t = Thread.currentThread(); 可以得到这一结论
* @param firstValue value for the initial entry of the map
*/
void createMap(Thread t, T firstValue) {
t.threadLocals = new ThreadLocalMap(this, firstValue);
}
一目了然,每个线程中都会new 一个新的ThreadLocalMap,每一个ThreadLocalMap的key值都是ThreadLocal,对于同一个ThreadLocal变量来说,这个key是一样的,但是并不会冲突,因为存储数据的是ThreadLocalMap中的Entry数组,即使Key相同,每个线程中的ThreadLocalMap不同,是两个完全不相干的ThreadLocalMap,其中的Entry[]更不同。这样,ThreadLocal就做到了线程间的数据隔离。
简单来说,为什么ThreadLocal可以做到线程间的数据隔离,因为每个线程中都有一个自己的ThreadLocalMap来存储数据。
第二个问题,ThreadLocal在Android中起到了什么作用呢?
从App的启动开始分析,Android的消息机制。
当App启动时,会创建全局唯一的Looper和MessageQueue对象。
这句话如何验证呢?当然是去看源码。
App的程序入口在哪里呢?在ActivityThread的main()这里。这个main()就是我们Java当中的main(),也就是程序的入口。
在main()中,调用了Looper.prepareMainLooper()。这个方法创建了全局唯一的MainLooper。我们来看一下这个方法是如何实现的:
public static void prepareMainLooper() {
prepare(false);
synchronized (Looper.class) {
if (sMainLooper != null) {
throw new IllegalStateException("The main Looper has already been prepared.");
}
sMainLooper = myLooper();
}
}
首先看 prepare(false) 这句,追踪到 prepare(false)中:
private static void prepare(boolean quitAllowed) {
if (sThreadLocal.get() != null) {
// 此时还未创建过Looper ,因此抛出异常
throw new RuntimeException("Only one Looper may be created per thread");
}
// set Looper
sThreadLocal.set(new Looper(quitAllowed));
}
在这个方法中往sThreadLocal中set了一个Looper,再往下走,myLooper(),看看myLooper()是如何实现的:
public static @Nullable Looper myLooper() {
return sThreadLocal.get();
}
可以非常清楚的看到,这里调用了ThreaLoacl的get(),通过刚才对ThreadLocal的分析,在set()调用后,get()获得的就是set进ThreaLocal中的数据。
接下来再进入Looper的构造方法中看一看:
private Looper(boolean quitAllowed) {
mQueue = new MessageQueue(quitAllowed);
mThread = Thread.currentThread();
}
这里创建了MessageQueue。
这里的一切,都是在主线程中进行的。由于ThreadLocal可以将线程间的数据隔离,因此,这个在主线程中创建的Looper和MessageQueue,是主线程中的。
发送消息
Handler登上舞台,发送消息离不开Handler。
如果要从子线程中,发送消息到主线程,那么,是这样的写法:
- 创建Handler
- 创建子线程,在子线程中进行网络请求等操作。
- 子线程网络请求结束,通过handler发送消息给主线程,通知主线程。
MainActivity.java
public class MainActivity extends AppCompatActivity {
//1.创建Handler
Handler mHandler = new Handler(){
@Override
public void handleMessage(Message msg) {
super.handleMessage(msg);
}
};
//2. 创建子线程,在子线程中进行网络请求等操作。
new Thread(new Runnable() {
@Override
public void run() {
//.....网络请求等操作
//3. 子线程网络请求结束,通过handler发送消息给主线程,通知主线程。
Message message = Message.obtain();
message.what = 1;
mHandler.sendMessage(message);
}
}).start();
}
基本上一个Handler发送消息的过程就是这样。那么到底是怎样通过Handler把消息从子线程发送到主线程的呢?
看源码: 首先看Handler的源码。我们首先分析的是sendMessage()
public final boolean sendMessage(Message msg)
{
return sendMessageDelayed(msg, 0);
}
....
public final boolean sendMessageDelayed(Message msg, long delayMillis)
{
if (delayMillis < 0) {
delayMillis = 0;
}
return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
}
....
public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
MessageQueue queue = mQueue;
if (queue == null) {
RuntimeException e = new RuntimeException(
this + " sendMessageAtTime() called with no mQueue");
Log.w("Looper", e.getMessage(), e);
return false;
}
return enqueueMessage(queue, msg, uptimeMillis);
}
一步一步追踪下来,我们可以看到,最终调用的是sendMessageAtTime(),首先看这个方法的第一句:
MessageQueue queue = mQueue;mQueue在Handler中赋值的过程是这样的:
public Handler(Callback callback, boolean async) {
if (FIND_POTENTIAL_LEAKS) {
final Class<? extends Handler> klass = getClass();
if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
(klass.getModifiers() & Modifier.STATIC) == 0) {
Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
klass.getCanonicalName());
}
}
mLooper = Looper.myLooper();
if (mLooper == null) {
throw new RuntimeException(
"Can't create handler inside thread " + Thread.currentThread()
+ " that has not called Looper.prepare()");
}
mQueue = mLooper.mQueue;
mCallback = callback;
mAsynchronous = async;
}
可以通过 mQueue = mLooper.mQueue;mLooper = Looper.myLooper();这两句代码得到:mLooper是主线程中的Looper,而mQueue是主线程中的MessageQueue。
怎么得到这一结论的呢? 通过mLooper = Looper.myLooper();这一关键代码得到的。前面已经分析过myLooper()。
public static @Nullable Looper myLooper() {
return sThreadLocal.get();
}
myLooper(),就是获取ThreadLocal中的数据。而ThreadLocal中的数据就是主线程中的Looper。既然Looper是主线程中的Looper,那么mQueue当然就是Looper构造方法中创建的那一个MessageQueue了。分析到这里,我们就发现了,此时子线程和主线程已经联系起来了。
再接着分析sendMessageAtTime(),此时,我们已经知道,sendMessageAtTime()中的MessageQueue被主线程的mQueue赋值,也就是说sendMessageAtTime()中的MessageQueue就是主线程的MessageQueue。此时mQueue!=null 程序往下走到enqueueMessage(queue, msg, uptimeMillis);这里来。
private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
msg.target = this;
if (mAsynchronous) {
msg.setAsynchronous(true);
}
return queue.enqueueMessage(msg, uptimeMillis);
}
分析enqueueMessage:
msg.target = this;这里的this就是此时这个Handler。首先点进Message的源码中,target就是一个Handler。此时将这个Handler赋值给msg,在处理消息的过程中,会使用这个Handler进行消息的分发。
queue.enqueueMessage(msg, uptimeMillis);
在这里就是往主线程的MessageQueue中插入Message了。
boolean enqueueMessage(Message msg, long when) {
if (msg.target == null) {
throw new IllegalArgumentException("Message must have a target.");
}
if (msg.isInUse()) {
throw new IllegalStateException(msg + " This message is already in use.");
}
synchronized (this) {
if (mQuitting) {
IllegalStateException e = new IllegalStateException(
msg.target + " sending message to a Handler on a dead thread");
Log.w(TAG, e.getMessage(), e);
msg.recycle();
return false;
}
msg.markInUse();
msg.when = when;
Message p = mMessages;
boolean needWake;
if (p == null || when == 0 || when < p.when) {
// New head, wake up the event queue if blocked.
msg.next = p;
//把msg赋值给全局变量mMessages
mMessages = msg;
needWake = mBlocked;
} else {
// Inserted within the middle of the queue. Usually we don't have to wake
// up the event queue unless there is a barrier at the head of the queue
// and the message is the earliest asynchronous message in the queue.
needWake = mBlocked && p.target == null && msg.isAsynchronous();
Message prev;
for (;;) {
prev = p;
p = p.next;
if (p == null || when < p.when) {
break;
}
if (needWake && p.isAsynchronous()) {
needWake = false;
}
}
msg.next = p; // invariant: p == prev.next
prev.next = msg;
}
// We can assume mPtr != 0 because mQuitting is false.
if (needWake) {
nativeWake(mPtr);
}
}
return true;
}
这里的关键代码,是一个死循环,MessageQueue就是一个链表。当有消息到来时,就会往链表中插入一条消息。也就是说,这时,主线程的MessageQueuq中已经有一条消息了。
处理消息:
在ActivityThread的main()中,下面有一句
Looper.loop();我们追踪进去看一下:
public static void loop() {
final Looper me = myLooper();
if (me == null) {
throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
}
final MessageQueue queue = me.mQueue;
// Make sure the identity of this thread is that of the local process,
// and keep track of what that identity token actually is.
Binder.clearCallingIdentity();
final long ident = Binder.clearCallingIdentity();
// Allow overriding a threshold with a system prop. e.g.
// adb shell 'setprop log.looper.1000.main.slow 1 && stop && start'
final int thresholdOverride =
SystemProperties.getInt("log.looper."
+ Process.myUid() + "."
+ Thread.currentThread().getName()
+ ".slow", 0);
boolean slowDeliveryDetected = false;
for (;;) {
Message msg = queue.next(); // might block
if (msg == null) {
// No message indicates that the message queue is quitting.
return;
}
// This must be in a local variable, in case a UI event sets the logger
final Printer logging = me.mLogging;
if (logging != null) {
logging.println(">>>>> Dispatching to " + msg.target + " " +
msg.callback + ": " + msg.what);
}
final long traceTag = me.mTraceTag;
long slowDispatchThresholdMs = me.mSlowDispatchThresholdMs;
long slowDeliveryThresholdMs = me.mSlowDeliveryThresholdMs;
if (thresholdOverride > 0) {
slowDispatchThresholdMs = thresholdOverride;
slowDeliveryThresholdMs = thresholdOverride;
}
final boolean logSlowDelivery = (slowDeliveryThresholdMs > 0) && (msg.when > 0);
final boolean logSlowDispatch = (slowDispatchThresholdMs > 0);
final boolean needStartTime = logSlowDelivery || logSlowDispatch;
final boolean needEndTime = logSlowDispatch;
if (traceTag != 0 && Trace.isTagEnabled(traceTag)) {
Trace.traceBegin(traceTag, msg.target.getTraceName(msg));
}
final long dispatchStart = needStartTime ? SystemClock.uptimeMillis() : 0;
final long dispatchEnd;
try {
msg.target.dispatchMessage(msg);
dispatchEnd = needEndTime ? SystemClock.uptimeMillis() : 0;
} finally {
if (traceTag != 0) {
Trace.traceEnd(traceTag);
}
}
if (logSlowDelivery) {
if (slowDeliveryDetected) {
if ((dispatchStart - msg.when) <= 10) {
Slog.w(TAG, "Drained");
slowDeliveryDetected = false;
}
} else {
if (showSlowLog(slowDeliveryThresholdMs, msg.when, dispatchStart, "delivery",
msg)) {
// Once we write a slow delivery log, suppress until the queue drains.
slowDeliveryDetected = true;
}
}
}
if (logSlowDispatch) {
showSlowLog(slowDispatchThresholdMs, dispatchStart, dispatchEnd, "dispatch", msg);
}
if (logging != null) {
logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
}
// Make sure that during the course of dispatching the
// identity of the thread wasn't corrupted.
final long newIdent = Binder.clearCallingIdentity();
if (ident != newIdent) {
Log.wtf(TAG, "Thread identity changed from 0x"
+ Long.toHexString(ident) + " to 0x"
+ Long.toHexString(newIdent) + " while dispatching to "
+ msg.target.getClass().getName() + " "
+ msg.callback + " what=" + msg.what);
}
msg.recycleUnchecked();
}
}
代码很长 ,我们首先抽出最关键代码进行分析:
final Looper me = myLooper();
if (me == null) {
throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
}
final MessageQueue queue = me.mQueue;
for (;;) {
Message msg = queue.next(); // might block
if (msg == null) {
// No message indicates that the message queue is quitting.
return;
}
try {
msg.target.dispatchMessage(msg);
dispatchEnd = needEndTime ? SystemClock.uptimeMillis() : 0;
} finally {
if (traceTag != 0) {
Trace.traceEnd(traceTag);
}
}
msg.recycleUnchecked();
}
首先,还是通过myLooper(),取得ThreadLocal中的Looper,再取得Looper中的MessageQueue,此时获取的Looper和MessageQueue都是主线程中的。
接下来是一个死循环:for(;;) 在其中通过queue.next(),不断的从MessageQueue中取消息,接下来 if (msg == null) return;也就是说,当消息为空时,不执行下面的操作,只有消息不为null走到下面一句msg.target.dispatchMessage(msg);使用msg中的Handler,进行消息的分发。
继续跟踪到dispatchMessage(msg)中:
public void dispatchMessage(Message msg) {
if (msg.callback != null) {
handleCallback(msg);
} else {
if (mCallback != null) {
if (mCallback.handleMessage(msg)) {
return;
}
}
handleMessage(msg);
}
}
可以看到,这里出现了handleMessage(msg);
public void handleMessage(Message msg) {
}
这个handleMessage(Message msg)就是我们重写的Handler中的handleMessage(Message msg),而这个消息就被传递过来,供我们使用。
大致的流程就是这样。