Redis(3):Redis数据库结构以及键值删除策略

Redis的数据库结构,结构为

typedef struct redisDb {
    dict *dict;                 /* The keyspace for this DB */
    dict *expires;              /* Timeout of keys with a timeout set */
    dict *blocking_keys;        /* Keys with clients waiting for data (BLPOP) */
    dict *ready_keys;           /* Blocked keys that received a PUSH */
    dict *watched_keys;         /* WATCHED keys for MULTI/EXEC CAS */
    struct evictionPoolEntry *eviction_pool;    /* Eviction pool of keys */
    int id;                     /* Database ID */
    long long avg_ttl;          /* Average TTL, just for stats */
} redisDb;

Redis是一个KV类型的数据库,比较重要的属性为(dict,expires)

  • dict:保存了数据库里面所有的键值对

他是key都是字符串类型,值的话是对应的对象(字符串,列表,hash,set,zset)

  • expires:保存了所有key值的到期时间,定期删除也是基于这张表做的
存在过期键值的数据库例子

Redis过期键删除策略(惰性删除、定期删除、主动清除)

  • 惰性删除

在获取(写操作之前也会先读取一下)这个key的时候判断键是否过期,如果过期的话就进行删除,并且返回空

  • 定期删除

它在规定的时间内,分多次遍历服务器中的各个数据库,从数据库的expires 字典中随机检查一部分键的过期时间,并删除其中的过期键。

  • 主动清理(当前已用内存超过maxmemory限定时,触发主动清理策略)
在介绍删除策略之前先了解一下删除算法,LRU跟LFU
  1. LRU(Least Recently Used,最久未使用的)以最近一次访问时间作为参考,淘汰很久没被访问过的数据,
  2. LFU(Least Frequently Used,最不频繁使用的)以访问次数作为参考,淘汰最近一段时间被访问次数最少的数据
主动删除策略,主要有3个维度(a:对key有设置过期时间的 b:所有key,c:不处理)

(a) 针对设置了过期时间的key做处理:

  1. volatile-ttl(time-to-live):在筛选时,会针对设置了过期时间的键值对,根据过期时间的先后进行删除,越早过期的越先被删除。
  2. volatile-random:就像它的名称一样,在设置了过期时间的键值对中,进行随机删除。
  3. volatile-lru:会使用 LRU 算法筛选设置了过期时间的键值对删除。
  4. volatile-lfu:会使用 LFU 算法筛选设置了过期时间的键值对删除。

(b) 针对所有的key做处理:

  1. allkeys-random:从所有键值对中随机选择并删除数据。
  2. allkeys-lru:使用 LRU 算法在所有数据中进行筛选删除。
  3. allkeys-lfu:使用 LFU 算法在所有数据中进行筛选删除。

(c) 不处理:

  1. noeviction:不会剔除任何数据,拒绝所有写入操作并返回客户端错误信息"(error)
主动删除策略配置建议

当存在热点数据时,LRU的效率很好,但偶发性的、周期性的批量操作会导致LRU命中率急剧下
降,缓存污染情况比较严重。这时使用LFU可能更好点。
根据自身业务类型,配置好maxmemory-policy(默认是noeviction),推荐使用volatile-lru。如
果不设置最大内存,当 Redis 内存超出物理内存限制时,内存的数据会开始和磁盘产生频繁的交
换 (swap),会让 Redis 的性能急剧下降。
当Redis运行在主从模式时,只有主结点才会执行过期删除策略,然后把删除操作”del key”同
步到从结点删除数据。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 222,183评论 6 516
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 94,850评论 3 399
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 168,766评论 0 361
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,854评论 1 299
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,871评论 6 398
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 52,457评论 1 311
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,999评论 3 422
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,914评论 0 277
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 46,465评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,543评论 3 342
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,675评论 1 353
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 36,354评论 5 351
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 42,029评论 3 335
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,514评论 0 25
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,616评论 1 274
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 49,091评论 3 378
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,685评论 2 360

推荐阅读更多精彩内容