这种新的不基于Receiver的直接方式,是在Spark 1.3中引入的,从而能够确保更加健壮的机制。替代掉使用Receiver来接收数据后,这种方式会周期性地查询Kafka,来获得每个topic+partition的最新的offset,从而定义每个batch的offset的范围。当处理数据的job启动时,就会使用Kafka的简单consumer api来获取Kafka指定offset范围的数据。
这种方式有如下优点:
1. 简化并行读取:
如果要读取多个partition,不需要创建多个输入DStream然后对它们进行union操作。Spark会创建跟Kafka partition一样多的RDD partition,并且会并行从Kafka中读取数据。所以在Kafka partition和RDD partition之间,有一个一对一的映射关系。
2. 高性能:
如果要保证零数据丢失,在基于receiver的方式中,需要开启WAL机制。这种方式其实效率低下,因为数据实际上被复制了两份,Kafka自己本身就有高可靠的机制,会对数据复制一份,而这里又会复制一份到WAL中。而基于direct的方式,不依赖Receiver,不需要开启WAL机制,只要Kafka中作了数据的复制,那么就可以通过Kafka的副本进行恢复。
3. 一次且仅一次的事务机制:
基于receiver的方式,是使用Kafka的高阶API来在ZooKeeper中保存消费过的offset的。这是消费Kafka数据的传统方式。这种方式配合着WAL机制可以保证数据零丢失的高可靠性,但是却无法保证数据被处理一次且仅一次,可能会处理两次。因为Spark和ZooKeeper之间可能是不同步的。
基于direct的方式,使用kafka的简单api,Spark Streaming自己就负责追踪消费的offset,并保存在checkpoint中。Spark自己一定是同步的,因此可以保证数据是消费一次且仅消费一次。
kafka数据流创建:
JavaPairReceiverInputDStream<String, String> directKafkaStream =
KafkaUtils.createDirectStream(
streamingContext,
[key class],
[value class],
[key decoder class],
[value decoder class],
[map of Kafka parameters],
[set of topics to consume]
);
Java代码:
spark: 2.3
kafka:1.1.1
scala:2.11
package cn.spark.streaming;
import java.util.Arrays;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Iterator;
import java.util.Map;
import java.util.Set;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.streaming.Durations;
import org.apache.spark.streaming.api.java.JavaDStream;
import org.apache.spark.streaming.api.java.JavaPairDStream;
import org.apache.spark.streaming.api.java.JavaPairInputDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;
import org.apache.spark.streaming.kafka.KafkaUtils;
import kafka.serializer.StringDecoder;
import scala.Tuple2;
/**
* 基于kafka Dricet方式的wordcount
*
*/
public class KafkaDriectWordCount {
public static void main(String[] args) throws Exception{
SparkConf conf = new SparkConf().setAppName("KafkaDriectWordCount");
JavaStreamingContext jssc = new JavaStreamingContext(conf, Durations.seconds(10));
// properties
Map<String, String> kafkaparams = new HashMap<String, String>();
kafkaparams.put("bootstrap.servers", "hserver-1:9092,hserver-2:9092,hserver-3:9092");
kafkaparams.put("group.id", "KafkaDriectWordCount");
kafkaparams.put("auto.offset.reset", args[0]);
// topic list
Set<String> topics = new HashSet<String>();
topics.add(args[1]);
// create DStream --> data struct: Tuple2<String, String> --> the first element is null
JavaPairInputDStream<String,String> KafkaInputDStream =
KafkaUtils.createDirectStream(
jssc,
String.class,
String.class,
StringDecoder.class,
StringDecoder.class,
kafkaparams,
topics
);
// flatMap
JavaDStream<String> WordDStream = KafkaInputDStream.flatMap(
new FlatMapFunction<Tuple2<String,String>, String>() {
private static final long serialVersionUID = 1L;
@Override
public Iterator<String> call(Tuple2<String, String> tuple) throws Exception {
return Arrays.asList(tuple._2.split(" ")).iterator();
}
});
// mapToPair
JavaPairDStream<String, Integer> PairDStream = WordDStream.mapToPair(
new PairFunction<String, String, Integer>() {
private static final long serialVersionUID = 1178400314423080582L;
@Override
public Tuple2<String, Integer> call(String word) throws Exception {
return new Tuple2<String, Integer>(word, 1);
}
});
// reduceByKey
JavaPairDStream<String, Integer> WordCountDStream = PairDStream.reduceByKey(
new Function2<Integer, Integer, Integer>() {
private static final long serialVersionUID = -4424371412114866268L;
@Override
public Integer call(Integer v1, Integer v2) throws Exception {
return v1 + v2;
}
});
// sort
JavaPairDStream<String, Integer> resultDStream = WordCountDStream.transformToPair(
new Function<JavaPairRDD<String,Integer>, JavaPairRDD<String,Integer>>() {
private static final long serialVersionUID = -4037579884645976648L;
@Override
public JavaPairRDD<String, Integer> call(JavaPairRDD<String, Integer> inputPairRDD) throws Exception {
// swap key - value
JavaPairRDD<Integer, String> reseverPairRDD = inputPairRDD.mapToPair(
new PairFunction<Tuple2<String,Integer>, Integer, String>() {
private static final long serialVersionUID = 8784589314191257879L;
@Override
public Tuple2<Integer, String> call(Tuple2<String, Integer> tuple) throws Exception {
return new Tuple2<Integer, String>(tuple._2, tuple._1);
}
});
// sortByKey
JavaPairRDD<Integer, String> sortPairRDD = reseverPairRDD.sortByKey(false);
// swap key - value
JavaPairRDD<String, Integer> resultPairRDD = sortPairRDD.mapToPair(
new PairFunction<Tuple2<Integer,String>, String, Integer>() {
private static final long serialVersionUID = 8784589314191257879L;
@Override
public Tuple2<String, Integer> call(Tuple2<Integer, String> tuple) throws Exception {
return new Tuple2<String, Integer>(tuple._2, tuple._1);
}
});
return resultPairRDD;
}
});
resultDStream.print();
jssc.start();
jssc.awaitTermination();
jssc.close();
}
}