声波的反射、吸收和透射
声波在传播过程中,除传入人耳引起声音大小、音调高低的感觉外,遇到障碍物如孔洞 等还将产生声波的反射、绕射、吸收、透射以及在室内由于多次反射所引起的混响等现象。这些现象在建筑声学设计中有着重要的作用。
当声波在传播过程中遇到尺度比波长大得多的障板(界面或障碍物)时,就会被反射,满足反射定律。反射定律的基本内容是:
(1) 入射声线、反射声线和反射面的法线在同一平面内。
(2) 入射声线和反射声线分别位于法线的两侧。
(3) 入射角等于反射角。
声波的干涉
在观众厅内通常会出现声干现象。例如,从声源发出的直射声波和来自壁面或平顶的反射声波在空间各点要相互干涉。如果是单频声(即纯音),这种干涉现象必然引起空间各点声场之间的很大差异,有些地方声波会加强,有些地方声波会减弱,甚至抵消而形成“死点”。使干涉效应不太明显。
在一般情况下,观众厅的尺度(长、宽、亮)比低频小波长大十几倍,形状也不“破坏”引起干涉的条件。因此,在大型观众厅内,干涉现象就不那么严重。只有在小室内,如录音、播音、监听和琴室等小房间需特别注意这一问题。
声波入射到建筑构件(如墙、板等)时,声能一般分为三个部分。
(1)一部分能量被反射,即前面所述的声波的反射。例如,大理石、玻璃等硬而光滑的材料能够把绝大部分的声波反射回去。
(2)一部分能量透过构件,即声波遇到障碍物时,其疏密相间的压力将推动障碍物发生相应的振动。其振动又引起另一侧的传声介质随之振动。声音透过障碍物的现象称为声波的 透射。墙、楼板的质量越轻,声波就越容易推动客观存在们发生振动动。墙、楼板的透射本领越好,则说明其隔声能力越差。透射。墙、楼板的质量越轻,声波就越容易推动客观存在们发生振动动。墙、楼板的透射本领越好,则说明其隔声能力越差。
回声现象
回声是反射声中的一个特殊现象。具体来说,出现回声的第一个条件是直达声与反射声之间的声程差大于17m,相应的时差超过50ms;另一个条件是该反射声的声压级足够高。对着远处的山崖或高大的建筑物喊一声,就可以听到清晰的回声。北京的天坛,不仅以它宏伟庄严的建筑艺术而闻名世界,令人神往的还有那回音壁和三音石。回音壁是明代修建的,已有五百年历史,它是一个圆形的墙壁,高约6m,直径为65m,砖墙很坚硬光滑,是很好的声音反射体。一个人对着回音壁说话,他发出的声波沿着壁面多次反射,在另一处可听到他的声音。站在位于围墙圆心和三音石上拍一下手,就能够听到连续两三次回声。这充分显示了我国劳动人民的智慧。
厅堂设计中出现回声将成为严重的音质缺陷。它引起对听闻的干扰。为了要消除回声,就应使到达听者的直达声与反射声之间的时差小于50ms,相应于直达声与反射声之间的声程差距小于17m(声速按340m/s计算),如大于17m,就有可能形成回声。应该指出,回声的消除还可用吸声材料(结构)或设置扩散结构等方法,不中是缩小直达声与反射声的声程差。
室内声学原理
在建筑设计中,建筑师经常遇到封闭窨的声学问题。声波在封闭空间中(如剧院观众厅、播音室等)的传播及其特性比在露天的场合更为复杂。首先,声源在室内发声与传播,听者也在室内接收;其次是界面(墙壁、顶棚、地面等)会对声波产生扫射、吸收、扩散和透身,形成室内声学的特点。因此,为了做好声学设计,应对声音在室内传播的规律及室内声场的特点有所了解。分析声波在室内传播情况,可以用波动声学(物理声学)的理论进行分析,但这将涉及到一些复杂的数学推导。
对于室内声音的形成,除了考虑其分布外,还需要考虑到达某一接收点的直达声和各个 反射声,在时间上有先后。当一声源在室内发声时,声波由声源到室内各接收点形成了复杂的声场。对于任一接收点,其所接收的声音可以简单地看作由三部分组成,第一部分为直达声,它是由声源直接到接收点而不受界面影响的声音,其声音强基本上按照距离平方反比而衰减;第二部分为早期反射声。它是指在直达声之后相对延迟时间为50ms内到达的反射声。这种短延时的反射声难以与直达专长分开,对直达声起到加强作用;第三部分为混响声,它是在前次反射后陆续到达的、经过多次反射的声音的统称。影响声的长短与强度将影响厅堂音质,如清晰度和丰满度等。
当声源在室内辐射声能时,声波在空间传播,当遇到界面时,部分声能被吸收,部分被反射。声波继续传播时,又第二次、第三次以及多次地被吸收的反射。这样,在空间就形成了一定的声音密度。随着声源不断地供给能量,室内声能密度将随时间增加而增加。这就是声音的增长过程。
这时,单位时间内被室内吸收的声能与声源供给的声能相等,室内声能密度就不再增加,而处于稳态平衡。对于一个室内吸声量大、容积也大的房间,接近稳态前的某一时刻的声能密度,比一个吸声量、容积均小的房间要弱。所以,在房间声学设计时,需恰当地确定容积和室内吸声量。
当声音达到稳态时,若声源突然停止发声,室内接收点上的声音并不会像在露天那样立即消失,而要有一个衰变过程、首先直达声消失,反射声将继续下去,每反射一次,声能被吸收一部分,因此,室内声能密度将逐渐减弱,直到完全消失,我们称之为“混响过程”或“交混回响”
室内声音的增长、稳态和衰变过程可以看出,当室内表面反射很强时,声源发声后,可获得较高的声能密度,而进入稳态过程的时间稍晚一点。当声源停止发声后,反射声消失的时间拖得长些,即声音变较慢。若室内表面吸声量增加,则与上述情况相反,短时间内达到稳态,且声能密度小,其混响过程也短一些。