一.普通判断 (直接判断是否是质数)
对于数值较小的数适合,对于上千位的数判断可能要花较长的时间
#普通判断 质数
def isPrime(num):
if num<2:
return False
for i in range(2,int(math.sqrt(num)+1)):
if num%2 == 0:
return False
return True
二.埃拉托色尼筛子(生成范围内的质数) 介绍
该方法可以获取范围内的质数.获取较大范围内的质数花费时间较长
def primeSieve(sieveSize):
sieve = [True] * sieveSize
# 0 和 1 都不是质数
sieve[0] = False
sieve[1] = False
for i in range(2, int(math.sqrt(sieveSize)+1)):
point = i * 2
while point<sieveSize:
sieve[point] = False
point += 1
primes = []
for i in range(sieveSize):
if sieve[i] == True:
primes.append(sieve[i])
return primes
三.拉宾米勒 判断法介绍
def rabinMiller(num):
s = num - 1
t = 0
while s%2 == 0:
s = s//2
#用来判断除了多少次
t += 1
for trials in range(5):
a = random.randrange(2,num-1)
v = pow(a,s,num)
if v != 1:
i = 0
while v != (num - 1):
if i == t- 1:
return False
else:
i = i+1
v = (v**2)%num
return True
#改进后判断质数的方法
def isPrime(num):
# Return True if num is a prime number. This function does a quicker
# prime number check before calling rabinMiller().
if (num < 2):
return False
lowPrimes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101,
103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199,
211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317,
331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443,
449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577,
587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701,
709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839,
853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983,
991, 997]
if num in lowPrimes:
return True
for prime in lowPrimes:
if num % prime == 0:
return False
return rabinMiller(num)
def generateLargePrime(keysize=1024):
# Return a random prime number of keysize bits in size.
while True:
num = random.randrange(2**(keysize-1), 2**(keysize))
if isPrime(num):
return num