CNV变异检测文献笔记(CODEX)

Biases in CNV detection:
  • GC content
  • exon capture and amplification efficiency
  • latent systemic articacts
image.png
Steps:
  • 起始文件为排序并索引好的bam文件,通过可比对性(mappability),外显子大小, 以及最小测序深度阈值来对bam进行过滤。过滤完成之后进行各位点测序深度的计算;
    We start with mapped reads from BAM fles (35) that are assembled, sorted and indexed by the same pipeline,
    and compute depth of coverage after a series of quality filtering based on mappability, exon size and a cutoff on minimum coverage.
  • 接着,使用log-linear模型对测序深度进行一个归一化。在归一化(normalization)过程中会对每一个样本的每一个外显子生成一个"control coverage"(它表示没有cnv时候的从测序深度),这些coverage将会用来与实际观察到的coverage进行比较;
    Then, we fit a normalization model based on a log-linear decomposition of the depth of coverage matrix into effects due to GC content, exon capture and amplifcation and other latent systemic factors.
  • 将每个样本实际检测到的coverage与normalization生成的"control coverage"通过"Poisson likelihood-based segmentation algorithm"进行比较,生成同源cnv变异(即与参考基因组序列相同的拷贝数变异);
    Next, the observed coverage for each exon and each sample is compared to the corresponding estimated control coverage in a Poisson likelihood-based segmentation algorithm, which returns a segmentation of the genome into regions of homogeneous copy number.
  • 最后,通过比较后得到的倍数就可以得到cnv了。
    A direct estimate of the relative copy number, in terms of fold change from the expected control value, can be used for genotyping.

Sample selection and target fltering

  • 推荐使用的数据都来自相同的捕获测序平台(reducing artifacts);
  • 对于外显子,采取4个步骤进行过滤:(1)coverage,对于所有样本的平均深度低于20的外显子过滤掉;(2)短外显子(<20bp);(3)难以进行比对的(mappappability < 0.9);(4)极端GC值(<20%或>80%);

Read depth normalization

Due to the extremely high level of systemic bias in WES data, normalization is crucial in WES CNV calling.
CODEX’s multi-sample normalization model takes as input the WES depth of coverage, exon-wise GC content and sample-wise total number of reads

Poisson latent factors and choice of K

有些影响cnv检测的原因可以直接检测到(如GC含量,mappability,外显子大小),然而也有些因素是难以直接检测的,如捕获建库测序或样本导致的bias,称之为潜在因素(latent factors)。
潜在因素的个数K是一个非常关键的因素,太大容易抑制屏蔽掉那些产生真实cnv的信号,太小又无法屏蔽那些干扰信号(artifacts),对结果造成干扰。
CODEX分别使用两个统计参数来评估K值:Akaike informa�tion criterion (AIC) and Bayes information criterion (BIC):


where L is the likelihood for the estimated model, k is the number of parameters in the model and n is the number of data points.

最后使用BIC值来确定K值。

Both CoNIFER and XHMM(28) use latent factor models to remove systemic bias, but their models assume continuous measurements with Gaussian noise structure, while CODEX is based on a Poisson log-linear model, which is more suitable for modeling the discrete counts in WES data, especially when there is high variance in depth of coverage between exons.

CNV detection and copy number estimation

Proper normalization sets the stage for accurate segmentation and CNV calling. For germline CNV detection in normal samples, many CNVs are short and extend over only one or two exons. In this case, simple gene- or exon-level thresholding is suffcient.
For longer CNVs and for copy number estimation in tumors where the events are expected to be large and exhibit nested structure, we propose a Poisson likelihood-based recursive segmentation algorithm.

Discuss

The distinguishing features of CODEX compared to existing methods are:
  • (i) CODEX does not require matched normal samples as controls for normalization;
  • (ii) The Poisson log-linear model fts better with the WES count data than SVD approaches;
  • (iii) Dependence on GC content is modeled by a flexible non-parametric function in CODEX allowing it to capture non-linear biases;
  • (iv) CODEX implements the BIC criterion for choosing the number of latent variables, which gives a conservative normalization on simulated and real data sets;
  • (v) Compared to HMM-based segmentation procedures, the segmentation procedure in CODEX is completely off-the-shelf and does not require large relevant training set;
  • (vi) CODEX estimates relative copy number, which can be converted to genotypes by thresholding, rather than broad categorizations (deletion, duplication and copy number neutral states)

文献:CODEX: a normalization and copy number variation detection method for whole exome sequencing.

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,684评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,143评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,214评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,788评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,796评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,665评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,027评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,679评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,346评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,664评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,766评论 1 331
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,412评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,015评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,974评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,073评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,501评论 2 343

推荐阅读更多精彩内容