Hadoop2.0架构

Hadoop2.0架构 - 我的学习成长日记 - 博客频道 - CSDN.NET
http://blog.csdn.net/onlyqi/article/details/50484527

打开Hadoop的官网,我们可以看到Hadoop2.0包括两个module: HDFS – Hadoop File System。 YARN – Yet Another Resource Negotiator 也称为MapReduce2.0,即MPv2
其中HDFS是底层的存储系统。不仅Hadoop的底层存储可以使用HDFS,其他分布式计算系统也可以使用HDFS作为底层存储系统。HDFS与在Hadoop1.0中有一些大的变化。而Hadoop2.0最重要的变化是新抽象出来的YARN,即独立的分布式资源管理与调度系统。YARN的出现主要为了解决Hadoop1.0中NameNode的瓶颈问题。了解Hadoop1.0的同学知道,在1.0中NameNode既是HDFS的主控服务器,也是JobTracker之所在,因此负载很高且容易单点失败。另外MapReduce作为分布式批处理计算范型,在2.0中没有什么改变。对Hadoop1.0不了解的同学建议先看看1.0的架构,这样有助于对2.0的理解: http://blog.csdn.net/onlyqi/article/details/50478997 下面我们分别就HDFS和YARN做进一步讨论。
HDFS 首先我们来看HDFS的架构:

这里写图片描述

大概描述是:HDFS仍然采用master/slave模式。主控节点仍然是NameNode,从节点仍然是多个DataNode。NameNode记录数据集的元数据。由于每个大文件load到HDFS时,都会被分割成默认64MB的数据块(Block),且这些数据块被分散到多个DataNode中做并行处理,因此NameNode需要管理一个文件分成了哪些Block,这些Block又分散在哪些DataNode上。这些映射关系就是元数据。当DataNode上的Block发生变化时,需向NameNode报告更新元数据。客户端操作数据时,需向NameNode查询元数据,在查询到数据所在的DataNode后,直接与DataNode交互,执行读/写操作。不同的数据块Block会有多个副本(主要是为了数据安全)。Rack是机架,一份数据的多个副本可能存在不同机架的服务器上。 在Hadoop2.0中,HDFS有两个大的改变:
HA方案 即High Availability。Hadoop1.0中的NameNode为单节点,而second NameNode并非是NameNode的热备机。因此在2.0中增加了stand-by NameNode(SNN),而主节点称为active NameNode(ANN)。ANN和SNN共享第三方存储,是热备方案,可自动failover。
NameNode联盟 HA解决了单节点失败的问题,但是NameNode的扩展性差的问题仍然没有解决。由于NameNode在内存中管理元数据,因此由于内存限制,Hadoop1.0能管理的机器数最多为4000~5000台。同时在多租户环境下(即一个集群运行完全不相关的多个应用),单一的NameNode无法实现租户间的有效隔离。NameNode联盟使用多个NameNode来解决扩展性问题,可管理1w台机器以上的集群。 NameNode联盟工作方式如下:将多个DataNode存储的Block的元数据分成多个Block Pool(并非是一对一的关系),而一个NameNode可以管理多个Block Pool。由此每个NameNode管理一部分元数据,且相互独立,不需要任何协调工作。 另外目前不能单独安装HDFS。也就是说如果你想用HDFS,需要直接安装Hadoop。

YARN 在Hadoop1.0中NameNode同时运行JobTracker,其作用是将用户提交到Hadoop的job分解成map或reduce task,并在各个DataNode上并发运行这些task。每个DataNode上都运行一个TaskTracker进程,跟踪报告task的运行情况并向JobTracker汇报。Hadoop2.0中这些功能被抽象成一个独立的模块,称为YARN。YARN本质上是一个分布式资源管理与调度系统。它包括: 唯一的资源管理器(Resource Manager) 每个作业一个的应用管理器(Application Master) 每个机器一个的节点管理器(Node Manager)

这里写图片描述

The ResourceManager has two main components: Scheduler and ApplicationsManager. The ApplicationsManager is responsible for accepting job-submissions, negotiating the firstContainer for executing the application specific ApplicationMaster and provides the service for restarting the ApplicationMaster container on failure.AM的功能和MPV1中的JobTracker类似。
The NodeManager is the per-machine framework agent who is responsible for containers, monitoring their resource usage (cpu, memory, disk, network) and reporting the same to the ResourceManager/Scheduler.
The per-application ApplicationMaster has the responsibility of negotiating appropriate resource containers from the Scheduler, tracking their status and monitoring for progress. YARN是一个典型的二级调度器。RM管理全局资源与调度,为一级调度器,将资源分配给每个Application Master。而Application Master为二级调度器,负责在不同的Node间分配协调资源,在container运行子任务。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,923评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,154评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,775评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,960评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,976评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,972评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,893评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,709评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,159评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,400评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,552评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,265评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,876评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,528评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,701评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,552评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,451评论 2 352

推荐阅读更多精彩内容