线性和二次判别分析

一、符号说明

\Sigma :协方差矩阵,特征之间相互独立,其实就是一个对角矩阵。

二、引言

线性判别分析(LDA)和二次判别分析(QDA)是两个经典的分类器。它们分别代表了线性决策平面和二次决策平面。这些分类器很容易计算得到解析解(指通过严格的公式所求得的解),其天生具有多分类的特性,且在实践中无需调参。线性判别分析与二次判别分析不同之处在于二次判别分析可以学习二次边界,模型更加灵活。如图:

线性VS二次

三、使用线性判别分析来降维

线性判别分析通过把输入的数据投影到由最大化类之间分离的方向所组成的线性子空间,可以执行有监督降维,输出的维度必然会比原来的类别更少,多分类环境下,它是一个十分强大的降维算法。

四、线性与二次判别分析的数学公式

LDA与QDA都源于简单的概率模型,这些模型对于每一个类别k的相关分布P(X|y=k)都可以通过贝叶斯定理获得:

P(y=k|X)=\frac{P(y=k)P(X|y=k)}{P(X)} =\frac{P(y=k)P(X|y=k)}{\Sigma _lP(y=l)P(X|y=l)}

我们最大化条件概率的类别k,更具体的说,P(X|y=k)被建模成多变量高斯分布:

P(X|y=k)=\frac{1}{(2\pi )^n\sqrt{|\Sigma|}} e^{-\frac{1}{2}(X-\mu _k)^T\Sigma ^{-1}(X-\mu_k)}

其中n代表特征个数,我们需要从训练数据中估计出类的先验概率P(y=k),类别均值μ_k,以及协方差矩阵。在LDA中,每个类别k的高斯分布共享协方差矩阵,通过比较两个类别的对数概率,可以看出两个类别之间的线性决策面,即log\frac{P(y=k|X)}{P(y=l|X)} 。在QDA中,没有关于高斯协方差矩阵的假设,因此有了二次决策平面。

五、收缩(Shrinkage)

收缩是一种训练样本数量相比于特征而言很小的情况下可以提升预测准确性的工具。

使用收缩VS不使用收缩

六、求解器(Solver)的选择

默认的求解器为'svd'(奇异值分解),不依赖于协方差矩阵的计算,在特征数量特别大时很有优势,但是,它无法与收缩同时使用。还有求解器‘lsqr'(最小二乘),它是一个高效的算法,支持收缩,但是仅用于分类。最后一个求解器'eigen'(特征分解),基于类间散度和类内离散率之间的优化,支持收缩,可以用于分类,但是它需要计算协方差矩阵,因此其不适用于大量特征的情况。

七、线性与二次判别分析示例

我们用鸢尾花数据集做个示例,原数据特征为4维,降维后只剩两维,方便可视化。

LDA降维后可视化

这就是LDA降维后的效果,可以看到LDA将该数据集降成了可以明显区分的两个部分。

我们再看看不降维与降维的效果:

不降维VS降维

可以看出来,几乎无差别。至于LDA降维公式的推导,博主推过曾经手写推过一次,推完之后感觉没有什么实际意义,重要的是我们知道LDA用于有监督线性降维就OK了。以后在做数据建模的时候能有这方面的意识就行。至于QDA,因为它无法用于降维可视化,所以不多讲述,该算法主要运用在非线性关系上建模,比如异或问题,它就是一种非线性关系。


参考:《Scikit-Learn官方API》

如有疑问,请留言;如有错误,请指正

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,752评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,100评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,244评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,099评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,210评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,307评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,346评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,133评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,546评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,849评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,019评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,702评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,331评论 3 319
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,030评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,260评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,871评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,898评论 2 351