读Flink源码谈设计:Exactly Once

本文首发于泊浮目的语雀:https://www.yuque.com/17sing

版本 日期 备注
1.0 2022.2.2 文章首发
1.0 2022.2.14 更新3.4部分,增强注释部分
1.2 2022.2.27 更新3.6部分,删除部分对于1.14版本不适的描述
1.3 2022.3.8 fix typo

本文基于Flink 1.14代码进行分析。

0.前言

将Flink应用至生产已有一段时间,刚上生产的时候有幸排查过因数据倾斜引起的Checkpoint超时问题——当时简单的了解了相关机制,最近正好在读Flink源码,不如趁这个机会搞清楚。

在这里,我们首先要搞清楚两种Exactly-Once的区别:

  • Exactly Once:在计算引擎内部,数据不丢失不重复。本质是通过Flink开启检查点进行Barrier对齐,即可做到。
  • End to End Exactly Once:这意味着从数据读取、引擎处理到写入外部存储的整个过程中,数据都是不丢失不重复的。这要求数据源可重放,写入端支持事务的恢复和回滚或幂等。

1. 数据倾斜为什么会引起Checkpoint超时

做Checkpoint时算子会有一个barrier的对齐机制(为何一定要对齐后面会讲到)。以下图为例讲解对齐过程:


当两条边下发barrier时,barrier1比barrier2先到达了算子,那么算子会将一条边输入的元素缓存起来,直到barrier2到了做Checkpoint以后才会下发元素。

每个算子对齐barrier后,会进行异步状态存储,然后下发barrier。每个算子做完Checkpoint时,会通知CheckpointCoordinator。当CheckpointCoordinator得知所有算子的Checkpoint都做完时,认为本次Checkpoint完成。

而在我们的应用程序中,有一个map算子接受了大量数据,导致barrier一直没有下发,最终整个Checkpoint超时。

2. Checkpoint的原理

其具体原理可以参考Flink团队的论文:Lightweight Asynchronous Snapshots for Distributed Dataflow。简单来说,早期流计算的容错方案都是周期性做全局状态的快照,但这有两个缺点:

  • 阻塞计算——做快照时是同步阻塞的。
  • 会将当前算子未处理以及正在处理的record一起做进快照,因此快照会变得特别大。

而Flink是基于Chandy-Lamport 算法来扩展的——该算法异步地执行快照,同时要求数据源可重放,但仍然会存储上游数据。而Flink的方案提出的方案在无环图中并不会存储数据。

在Flink中(无环有向图),会周期性的插入Barrier这个标记,告知下游算子开始做快照。这个算法基于以下前提:

  • 网络传输可靠,可以做到FIFO。这里会对算子进行blockedunblocked操作,如果一个算子是blocked,它会把从上游通道接收到的所有数据缓存起来,直接收到unblocked的信号才发送。
  • Task可以对它们的通道进行以下操作:block, unblock, send messages, broading messages
  • 对于Source节点来说,会被抽象成Nil输入通道。

3. Checkpoint的实现

在Flink中,做Checkpoint大致由以下几步组成:

  1. 可行性检查
  2. JobMaster通知Task触发检查点
  3. TaskExecutor执行检查点
  4. JobMaster确认检查点

接下来,让我们跟着源码来看一下里面的具体实现。

3.1 可行性检查

参考代码:CheckpointCoordinator#startTriggeringCheckpoint

  1. 确保作业不是处于关闭中或未启动的状态(见CheckpointPlanCalculator#calculateCheckpointPlan)。
  2. 生成新的CheckpointingID,并创建一个PendingCheckpoint——当所有Task都完成了Checkpoint,则会转换成一个CompletedCheckpoint。同时也会注册一个线程去关注是否有超时的情况,如果超时则会Abort当前的Checkpoint(见CheckpointPlanCalculator#createPendingCheckpoint)。
  3. 触发MasterHook。部分外部系统在触发检查点之前,需要做一些扩展逻辑,通过该实现MasterHook可以实现通知机制(见CheckpointPlanCalculator#snapshotMasterState)。
  4. 重复步骤1,没问题的话通知SourceStreamTask开始触发检查点(见CheckpointPlanCalculator#triggerCheckpointRequest)。

3.2 JobMaster通知Task触发检查点

CheckpointPlanCalculator#triggerCheckpointRequest中,会通过triggerTasks方法调用到Execution#triggerCheckpoint方法。Execution对应了一个Task实例,因此JobMaster可以通过里面的Slot引用找到其TaskManagerGateway,发送远程请求触发Checkpoint。

3.3 TaskManager执行检查点

TaskManager在代码中的体现为TaskExecutor。当JobMaster触发远程请求至TaskExecutor时,handle的方法为TaskExecutor#triggerCheckpoint,之后便会调用Task#triggerCheckpointBarrier来做:

  1. 做一些检查,比如Task是否是Running状态
  2. 触发Checkpoint:调用CheckpointableTask#triggerCheckpointAsync
  3. 执行检查点:CheckpointableTask#triggerCheckpointAsync。以StreamTask实现为例,这里会考虑上游已经Finish时如何触发下游Checkpoint的情况——通过塞入CheckpointBarrier来触发;如果任务没有结束,则调用StreamTask#triggerCheckpointAsyncInMailbox。最终都会走入SubtaskCheckpointCoordinator#checkpointState来触发Checkpoint。
  4. 算子保存快照:调用OperatorChain#broadcastEvent:保存OperatorState与KeyedState。
  5. 调用SubtaskCheckpointCoordinatorImpl#finishAndReportAsync,:异步的汇报当前快照已完成。

3.4 JobMaster确认检查点

|-- RpcCheckpointResponder
  \-- acknowledgeCheckpoint
|-- JobMaster
  \-- acknowledgeCheckpoint
|-- SchedulerBase
  \-- acknowledgeCheckpoint
|-- ExecutionGraphHandler
  \-- acknowledgeCheckpoint
|-- CheckpointCoordinator
  \-- receiveAcknowledgeMessage

在3.1中,我们提到过PendingCheckpoint。这里面维护了一些状来确保Task全部Ack、Master全部Ack。当确认完成后, CheckpointCoordinator将会通知所有的Checkpoint已经完成。

|-- CheckpointCoordinator
  \-- receiveAcknowledgeMessage
  \-- sendAcknowledgeMessages  //通知下游Checkpoint已经完成。如果Sink实现了TwoPhaseCommitSinkFunction,将会Commit;如果因为一些原因导致Commit没有成功,则会抛出一个FlinkRuntimeException,而pendingCommitTransactions中的将会继续保存失败的CheckpointId,当检查点恢复时将会重新执行。

3.5 检查点恢复

该部分代码较为简单,有兴趣的同学可以根据相关调用栈自行阅读代码。

|-- Task
  \-- run
  \-- doRun
|-- StreamTask
  \-- invoke
  \-- restoreInternal
  \-- restoreGates
|-- OperatorChain
  \-- initializeStateAndOpenOperators
|-- StreamOperator
  \-- initializeState
|-- StreamOperatorStateHandler
  \-- initializeOperatorState
|-- AbstractStreamOperator
  \-- initializeState
|-- StreamOperatorStateHandler
  \-- initializeOperatorState
|-- CheckpointedStreamOperator
  \-- initializeState #调用用户代码

3.6 End to End Exactly Once

端到端的精准一次实现其实是比较困难的——考虑一个Source对N个Sink的场景。故此Flink设计了相应的接口来保障端到端的精准一次,分别是:

  • TwoPhaseCommitSinkFunction:想做精准一次的Sink必须实现此接口。
  • CheckpointedFunction:Checkpoint被调用时的钩子。
  • CheckpointListener:顾名思义,当Checkpoint完成或失败时会通知此接口的实现者。

目前Source和Sink全部ExactlyOnce实现的只有Kafka——其上游支持断点读取,下游支持回滚or幂等。有兴趣的同学可以阅读该接口的相关实现。

4. 小结

本文以问题视角切入Checkpoint的原理与实现,并对相关源码做了简单的跟踪。其实代码的线路是比较清晰的,但涉及大量的类——有心的同学可能已经发现,这是单一职责原则的体现。TwoPhaseCommitSinkFunction中的实现也是典型的模版方法设计模式。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,099评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,828评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,540评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,848评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,971评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,132评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,193评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,934评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,376评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,687评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,846评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,537评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,175评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,887评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,134评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,674评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,741评论 2 351

推荐阅读更多精彩内容