Given an array where elements are sorted in ascending order, convert it to a height balanced BST.
For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.
Example:
Given the sorted array: [-10,-3,0,5,9],
One possible answer is: [0,-3,9,-10,null,5], which represents the following height balanced BST:
0
/ \
-3 9
/ /
-10 5
Solution: recursion
- 根据BST的特性,left < current < right,取数组的
middle index
数,作为当前root。 - 以
nums: start, middle -1
构建找子树 - 以
nums: middle + 1, end
构建右子树 - base case:start > end 退出。
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public TreeNode sortedArrayToBST(int[] nums) {
if (nums == null || nums.length == 0) {
return null;
}
return sortedArrayToBSTHelper (nums, 0, nums.length - 1);
}
private TreeNode sortedArrayToBSTHelper (int[] nums, int start, int end) {
if (start > end) {
return null;
}
int mid = start + (end - start) / 2;
TreeNode currentNode = new TreeNode (nums[mid]);
TreeNode leftNode = sortedArrayToBSTHelper (nums, start, mid - 1);
TreeNode rightNode = sortedArrayToBSTHelper (nums, mid + 1, end);
currentNode.left = leftNode;
currentNode.right = rightNode;
return currentNode;
}
}