算法笔记(20)交叉验证及Python代码实现

常用交叉验证法包括K折叠交叉验证法(K-fold cross validation)、随机拆分交叉验证法(shuffle-split cross validation)、挨个儿试试法(leave-one-out)。


交叉验证法

K折叠交叉验证法(K-fold cross validation)

K折叠交叉验证法将数据集拆分成K个部分,再用K个数据集对模型进行训练和评分。例如K=5,则数据集被拆分成5个,其中第一个子集会被作为测试数据集,另外4个用来训练模型,之后再用第二个子集作为测试集,而另外4个用来训练模型,以此类推,直到把5个数据集全部用完,这样我们会得到5个模型的评分。模型最终的评分使用5个得分的平均分来计算。
分层K折叠交叉验证法:每个子集中都有数量基本一致的不同分类标签
不分层K折叠交叉验证法:每个子集可能都是同一个标签

wine = load_wine()
svc = SVC(kernel='linear')

scores = cross_val_score(svc, wine.data, wine.target, cv=6)
print('交叉验证得分:\n{}'.format(scores))
print('交叉验证平均分:{:.3f}'.format(scores.mean()))

交叉验证得分:
[ 0.86666667 0.9 0.93333333 0.96666667 1. 1. ]
交叉验证平均分:0.944
分析:cross_val_score默认使用3个折叠,可以通过cv参数指定K值,分类模型默认使用分层K折叠交叉验证法。

随机拆分交叉验证法(shuffle-split cross validation)

原理:先从数据集中随机抽一部分数据集作为训练集,再从其余的部分随机抽一部分作为测试集,进行评分后再迭代,重复上一步的动作,直到把我们希望迭代的次数全部跑完。

from sklearn.model_selection import ShuffleSplit
shuffle_split = ShuffleSplit(test_size=.2, train_size=.7,
                             n_splits = 10)
scores = cross_val_score(svc, wine.data, wine.target, cv=shuffle_split)
print('随机拆分交叉验证模型得分:\n{}'.format(scores))

随机拆分交叉验证模型得分:
[ 0.91666667 0.91666667 0.91666667 0.94444444 0.97222222 0.91666667
0.91666667 0.97222222 0.97222222 0.97222222]
分析:每次迭代测试集设置为数据集的20%,训练集设置为数据集的70%,并且把整个数据集拆分成10个子集,模型进行了10次评分,最终得分是10个分数的平均值。

挨个儿试试法(leave-one-out)

原理:把每一个数据点都当成一个数据集,数据集里面有多少样本就要迭代多少次,数据集大的话,耗时,数据集少的话,准确度高。

from sklearn.model_selection import LeaveOneOut
cv = LeaveOneOut()
scores = cross_val_score(svc, wine.data, wine.target, cv=cv)
print('迭代次数:{}'.format(len(scores)))
print("模型平均分:{:.3f}".format(scores.mean()))

迭代次数:178
模型平均分:0.955
分析:交叉验证法比train_test_split更加消耗资源,而且速度要慢一些

想要完整代码的朋友,可toutiao搜索“编程研究坊”关注后s信我,回复“算法笔记20“获取

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,417评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,921评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,850评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,945评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,069评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,188评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,239评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,994评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,409评论 1 304
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,735评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,898评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,578评论 4 336
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,205评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,916评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,156评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,722评论 2 363
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,781评论 2 351

推荐阅读更多精彩内容