数据采集设计

数据分析流程

一个典型的数据平台,对于数据的处理,是由如下的5个步骤组成的:

数据采集--〉数据传输--〉数据建模--〉数据统计--〉数据可视化展示

其中,我们认为,第一个步骤,也即数据采集是最核心的问题。数据采集是否丰富,采集的数据是否准确,采集是否及时,都直接影响整个数据平台的应用的效果。

埋点

埋点是对用户行为数据进行采集的方法,通常包括以下几种埋点方式:

1. 手动埋点(代码埋点)

代码埋点出现的时间很早了,在 Google Analytics 年代,就已经出现了类似的方案了。目前,国内的主要第三方数据分析服务商,如百度统计、友盟、TalkingData 等都提供了这一方案。

它的技术原理也很简单,在APP或者界面初始化的时候,初始化第三方数据分析服务商的SDK,然后在某个事件发生时就调用SDK里面相应的数据发送接口发送数据。

代码埋点也有一些劣势。

1. 首先,埋点代价比较大,每一个控件的埋点都需要添加相应的代码,不仅工作量大,而且限定了必须是技术人员才能完成。

2. 其次是更新的代价比较大,每一次更新埋点方案,都必须改代码,然后通过各个应用市场进行分发,并且总会有相当多数量的用户不喜欢更新APP,这样埋点代码也就得不到更新了。

3. 再次,埋点行为比较容易犯错,漏埋,错埋,经常发生,并且不方便测试。

4. 最后,业务人员经常会在app上线后提出采集需求,这时候需要重新发布app版本才能添加代码埋点。

2. 全埋点

全埋点的埋点事件全部由sdk自动捕获,相对手动埋点节省了很大的工作量。

全埋点主要包括页面自动埋点和点击事件的自动埋点。

全埋点事件的唯一标识一般是以触发事件的类名,按钮的title,按钮在页面子控件中的编号,按钮的类型,按钮所属控制器的类名等组合生成。但这种方式会随着页面调整造成一些统计错误,并且全埋点无法覆盖带有特殊业务属性的埋点事件(比如点击购买商品需要带上商品sku)。

3.埋点可视化圈选

埋点圈选一般是基于全埋点,也有通过配置文件下发埋点的方式。埋点的圈选操作是在app的可视化界面下完成,即使是不懂技术的业务角色也可以轻松按照自己的业务分析需求,设置不同埋点,从而避免了因为与技术的沟通失误造成的错埋与漏埋。并且即埋即见数据,更有助于依赖数据实现产品的快速迭代与运营策略指定。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,258评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,335评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,225评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,126评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,140评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,098评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,018评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,857评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,298评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,518评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,678评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,400评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,993评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,638评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,801评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,661评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,558评论 2 352

推荐阅读更多精彩内容