m分别使用能量检测法和循环谱实现ofdm信号检测matlab仿真

1.算法描述

为了在接收端进行数据恢复,需要知道调制值的参考相位和幅度,在实际系统中,由于载波频率偏移、定时偏差记忆信道的频率选择性衰落等的影响信号会收到破坏,导致相位偏移和幅度变化。为了恢复信号,接收端存在两种信号检测方法,查分检测和相干检测。差分检测可以在时域和频域内分别进行:时域内差分通过比较当前OFDM符号子载波与前一个OFDM符号中对应子载波间幅度和相位的差值来实现。相干检测利用信号的参考值来检测信号,所以在使用相干信号检测的时候,前面需要一个信道估计。差分检测方法比较适合较低传输速率的OFDM系统,如欧洲的DAB系统。而对于要求更高的传输速率和频谱效率的OFDM系统,相干检测更合适。


OFDM 中信号检测算法总体分为三类,线性检测、非线性检测、最优检测。常用的算法有迫零ZF检测、均方误差MMSE、V-BLAST 检测和最大似然检测算法。在最优检测中的最大似然(ML)检测算法虽然性能是这几类中最好的,但其复杂度是随着天线数和信号调制阶数的逐渐的增加而成指数量级快速增加。当在实际应用中天线数目过多时,该检测算法的计算量将非常大,所以不适合实际使用。线性检测中最小均方误差(MMSE)信号检测算法和迫零(ZF)信号检测算法都归属于线性检测算法类型,它们只能对在信道矩阵方面对接收信号进行相对于线性均衡性质的检测,实现虽然简单,但是检测性能不理想,对比最大似然(ML)检测算法的精确度相差很多。V-BLAST 检测算法的性能和复杂度介于最大似然检测和线性检测之间,在现实中被广泛地应用。


1.1能量检测法


能量检测法是一种非相干的检测手段,与频谱分析非常相似,也是通过判决来实现的。该方法依据感知器在信号有无两种假设情况下按接收信号功率大小的不同对信号进行检测。这种方法是一种对未知参数的确定性信号及其存在性检测的有效方法。由于能量检测对信号类型不作限制,因此不需要授权信号的先验信息。能量检测的主要思想是:将授权信号S(t)的功率在一个时间段(N个采样点)内取平均:



1.2循环谱检测法


谱相关分析方法主要有以下特点:

1.很多声呐信号都是循环平稳信号,而噪声却是平稳信号。当给回波信号做循环相关时,噪声大都集中在alpha=0上,而alpha=0相当于传统功率谱,如果采用传统功率谱方法,无法针对噪声进行抑制,而循环谱却可以在低信噪比的情况下很好的抑制平稳噪声。

2.由于循环谱包含幅度和相位,谱相关函数能为信号分析提供更多的信息(信号载频,带宽,符号速率,相位和时间)。所以采用循环谱方法,可以通过二维空间来提取更多的特征参数。

3.由于大多人造信号都是循环平稳信号,和传统的功率谱分析方法,谱相关分析更准确地揭示令循环平稳信号的本质。



2.仿真效果预览

matlab2022a仿真结果如下:




3.MATLAB核心程序

%OFDM参数

%数据长度

paras.lens   = 2000;

%数据速率

paras.rate   = 6;

%信号发射速率,恒定

Rate              = 20e6;

fc                = 100e6;

%循环谱检测参数

%采样频率

fs      = 300e6;

%采样长度

N       = 2048;  

%平滑点数

M       = 20;    

%信噪比

SNR     = 15;

%数据

Signals     = round(rand(1,8*paras.lens));

%OFDM信号生成

Signal_OFDM = transmitter(Signals,paras);

%提升信号采样率

s_n         = ceil(fs/Rate);

Signal_OFDM = Signal_OFDM(ones(s_n,1),:);

Signal_OFDM = reshape(Signal_OFDM, 1, s_n*length(Signal_OFDM));


%载波调制

Signal_channel = real(Signal_OFDM.*exp(j*2*pi*fc/fs*(0:length(Signal_OFDM)-1)));

Signal_channel = [Signal_channel];

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,386评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,142评论 3 394
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,704评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,702评论 1 294
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,716评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,573评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,314评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,230评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,680评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,873评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,991评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,706评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,329评论 3 330
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,910评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,038评论 1 270
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,158评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,941评论 2 355

推荐阅读更多精彩内容