tensorflow初探十之神经网络发展和气tensorflow实现——《Tensorflow技术解析与实战学习

第六章-神经网络的发展及其 TensorFlow 实现

6.1 卷积神经网络

卷积神经网络(CNN),它的权值共享(weight sharing)的网络结构显著降低了模型的复杂度,减少了权值的数量,是目前语音分析和图像识别领域研究热点。卷积神经网络
可以直接将图片作为网络的输入,自动提取特征,并且对图片的变形(如平移、比例缩放、倾斜)等具有高度不变形
神经网络(neural networks, NN)的基本组成包括输入层、隐藏层、输出层。卷积神经网络的特点在于隐藏层分为卷积层和池化层(pooling layer,又叫下采样层)。卷积层通过一块块卷积核(conventional kernel)在原始图像上平移来提取特征,每一个特征就是一个特征映射;而池化层通过汇聚特征后稀疏参数来减少要学习的参数,降低网络的复杂度,池化层最常见的包括最大值池化(max pooling)和平均值池化(average pooling)。

卷积神经网络构成的金字塔形状

卷积核在提取特征映射时的动作称为 padding,其有两种方式,即 SAME 和 VALID。由于移动步长(Stride)不一定能整除整张图的像素宽度,我们把不越过边缘取样称为 Valid Padding,取样的面积小于输入图像的像素宽度;越过边缘取样称为 Same Padding,取样的面积和输入图像的像素宽度一致。

image.png

6.2 卷积神经网络的发展

第一个卷积神经网络模型 LeCun 诞生于 1989 年,其发明人是 LeCun。1998 年 LeCun 提出了 LeNet,但随后卷积神经网络的锋芒逐渐被 SVM 等手工设计的特征的分类器盖过。随着 ReLU 和 Dropout 的提出,以及 GPU 和大数据带来的历史机遇,卷积神经网络在 2012 年迎来了历史性突破—AlexNet。AlexNet 之后卷积神经网络的演化过程主要有 4 个方向的演化:一个是网络加深,二是增强卷积层的功能,三是从分类任务到检测任务,四是增加新的功能模块。


卷积神经网络的发展

6.3使用tensorflow构建一个AlexNet

alexnet的网络结构

关于LRN的计算公式和tensorflow中的对应公式看不懂
image.png

lrn的计算公式

TensorFlow 的模型都位于 https://github.com/tensorflow/models。正如 5.2 节中介绍的,这个目录中有很多图像和语音处理的模型,可以直接拿来用。这些模型的检查点文件(参参 4.8.1节 ckpt 模型文件的保存)有的被打成压缩包,可以直接下载,当作预训练模型使用.

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,717评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,501评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,311评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,417评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,500评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,538评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,557评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,310评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,759评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,065评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,233评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,909评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,548评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,172评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,420评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,103评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,098评论 2 352

推荐阅读更多精彩内容