【R>>ggprism】Graphpad Prism绘图风格

做科研的Graphpad Prism是避不开的一道关,那么是否可以用R来实现其绘图风格呢?在微信公众号例竟然发现一篇好文,《一行代码绘制Graphpad Prism风格学术表》,下面就来一起学习下吧,接下来是对这篇推文的记录和整理,原文链接在文末:


乍一看,该R包的图标就有浓浓的Graphpad风。

核心函数:

  • theme_prism():绘图主题

  • scale_colour/fill/shape_prism():颜色、填充、形状

  • scale_x/y_discrete/continuous(guide = “prism_bracket”):刻度设置 或者guides(y/x=“prism_bracket”)

  • add_pvalues():自动添加p值

安装

library(pacman)
p_load(ggprism)
p_load(tidyverse)

#开发者版本
#remotes::install_github("csdaw/ggprism")

快速入门

tg <- ToothGrowth
tg$dose <- as.factor(tg$dose)
base <- ggplot(tg,aes(dose,len))+
  geom_violin(aes(color=dose,fill=dose),trim=F)+
  geom_boxplot(aes(fill=dose),width=0.2,color="black")+
  scale_y_continuous(limits = c(-5,40))

p_vals <- tibble::tribble(
  ~group1, ~group2, ~p.adj,   ~y.position,
  "0.5",   "1",     8.80e-14, 35,
  "0.5",   "2",     1.27e-7,  39
)
p1 <- base+
  scale_color_prism("floral")+
  scale_fill_prism("floral")+
  guides(y="prism_offset_minor")+
  theme_prism(base_size=16)+
  theme(legend.position = "none")+
  add_pvalue(p_vals,label = "p = {p.adj}", tip.length = 0,label.size = 4)

#快速拼图
library(patchwork)
base+p1
image.png

p值添加

考虑到科研中大家最常关注的就是p值,下面把关注点着重放在pvalue上面:

模板一

p_load(rstatix)
df_p_val <- rstatix::t_test(tg,len~supp) %>% 
  add_x_position()
p <- ggplot(tg, aes(factor(supp),len))+
  stat_summary(geom = "col",fun=mean)+
  stat_summary(geom = "errorbar",
               fun=mean,
               fun.min = function(x) mean(x)-sd(x),
               fun.max = function(x) mean(x)+sd(x),
               width=0.3)+
  theme_prism()+
  coord_cartesian(ylim=c(0,35))+
  scale_y_continuous(breaks = seq(0,35,5),expand = c(0,0))
p+add_pvalue(df_p_val,y.position =30)
image.png

模板二

df_p_val <- rstatix::t_test(tg,len~dose,ref.group = "0.5") %>% 
  add_xy_position()
p <- ggplot(tg, aes(factor(dose),len))+
  stat_summary(geom = "col",fun=mean)+
  stat_summary(geom = "errorbar",
               fun=mean,
               fun.min = function(x) mean(x)-sd(x),
               fun.max = function(x) mean(x)+sd(x),
               width=0.3)+
  theme_prism()+
  coord_cartesian(ylim=c(0,40))+
  scale_y_continuous(breaks = seq(0,40,5),expand = c(0,0))
p1 <- p+add_pvalue(df_p_val,label = "p.adj.signif")
p2 <- p+add_pvalue(df_p_val,label = "p.adj.signif",remove.bracket = T)
p1+p2
image.png

进阶版

示例数据采用的是Prism8中XY的剂量反应关系。

rm(list = ls())
p_load(tidyverse)
p_load(ggprism)
p_load(ggnewscale)

# 输入数据准备

df <- data.frame(
  agonist = c(1e-10, 1e-8, 3e-8, 1e-7, 3e-7, 1e-6, 3e-6, 1e-5, 3e-5, 1e-4, 3e-4),
  ctr1 = c(0, 11, 125, 190, 258, 322, 354, 348, NA, 412, NA),
  ctr2 = c(3, 33, 141, 218, 289, 353, 359, 298, NA, 378, NA),
  ctr3 = c(2, 25, 160, 196, 345, 328, 369, 372, NA, 399, NA),
  trt1 = c(3, NA, 11, 52, 80, 171, 289, 272, 359, 352, 389),
  trt2 = c(5, NA, 25, 55, 77, 195, 230, 333, 306, 320, 338), 
  trt3 = c(4, NA, 28, 61, 44, 246, 243, 310, 297, 365, NA)
) %>% 
  mutate(log.agonist = log10(agonist)) %>% 
  pivot_longer(
    c(-agonist, -log.agonist), 
    names_pattern = "(.{3})([0-9])", 
    names_to = c("treatment", "rep"),
    values_to = "response"
  ) %>% 
  filter(!is.na(response))
head(df)
## # A tibble: 6 x 5
##        agonist log.agonist treatment rep   response
##          <dbl>       <dbl> <chr>     <chr>    <dbl>
## 1 0.0000000001         -10 ctr       1            0
## 2 0.0000000001         -10 ctr       2            3
## 3 0.0000000001         -10 ctr       3            2
## 4 0.0000000001         -10 trt       1            3
## 5 0.0000000001         -10 trt       2            5
## 6 0.0000000001         -10 trt       3            4
p <- ggplot(df,aes(x=log.agonist, y=response))
dose_resp <- y ~ min + ((max - min) / (1 + exp(hill_coefficient * (ec50 - x))))
p <- p+geom_smooth(aes(color=treatment),
                   method = "nls",
                   formula = dose_resp,
                   se=F,
                   method.args=list(start=list(min=1.67,max=397,ec50=-7,hill_coefficient=1)))
p
image.png
# 改变曲线颜色

p <- p+scale_color_manual(
  labels = c("No inhibitor", "Inhibitor"),
  values = c("#00167B", "#9FA3FE")
)
p
image.png
# 调整线条颜色
p <- p+ggnewscale::new_scale_color()+
  geom_point(aes(color=treatment,shape=treatment),size=3)+
  scale_color_prism(
    palette = "winter_bright",
    labels=c("No inhibitor",
             "Inhibitor"))+
  scale_shape_prism(
    labels=c("No inhibitor",
             "Inhibitor"))
p
image.png
# 调整主题
p <- p+theme_prism(palette = "winter_bright",
                   base_size = 16)
p
image.png
# 调整y轴
p <- p+scale_y_continuous(
  limits=c(-100,500),
  breaks = seq(-100,500,100),
  guide = "prism_offset"
)
p
image.png
#调整x轴
p <- p + scale_x_continuous(
  limits = c(-10, -3), 
  breaks = -10:-3,
  guide = "prism_offset_minor",
  minor_breaks = log10(rep(1:9, 7)*(10^rep(-10:-4, each = 9))),
  labels = function(lab) {
    do.call(
      expression,
      lapply(paste(lab), function(x) bquote(bold("10"^.(x))))
    )
  }
)
p
image.png
# 调整x轴和y轴标题,删除legend
p <- p+theme(
  axis.title.y = element_blank(),
  axis.title.x = element_blank(),
  legend.position = c(0.05,0.95),
  legend.justification = c(0.05,0.95)
)+
  labs(x="[Agonist], M")
p
image.png

完整代码(remember the order of layers is important)

dose_resp <- y ~ min + ((max - min) / (1 + exp(hill_coefficient * (ec50 - x))))

ggplot(df, aes(x = log.agonist, y = response)) + 
  geom_smooth(
    aes(colour = treatment),
    method = "nls", formula = dose_resp, se = FALSE,
    method.args = list(start = list(min = 1.67, max = 397, ec50 = -7, hill_coefficient = 1))
  ) + 
  scale_colour_manual(labels = c("No inhibitor", "Inhibitor"),
                      values = c("#00167B", "#9FA3FE")) + 
  ggnewscale::new_scale_colour() +
  geom_point(aes(colour = treatment, shape = treatment), size = 3) + 
  scale_colour_prism(palette = "winter_bright", 
                     labels = c("No inhibitor", "Inhibitor")) + 
  scale_shape_prism(labels = c("No inhibitor", "Inhibitor")) + 
  theme_prism(palette = "winter_bright", base_size = 16) + 
  scale_y_continuous(limits = c(-100, 500), 
                     breaks = seq(-100, 500, 100),
                     guide = "prism_offset") + 
  scale_x_continuous(
    limits = c(-10, -3), 
    breaks = -10:-3,
    guide = "prism_offset_minor",
    minor_breaks = log10(rep(1:9, 7)*(10^rep(-10:-4, each = 9))),
    labels = function(lab) {
      do.call(
        expression,
        lapply(paste(lab), function(x) bquote(bold("10"^.(x))))
      )
    }
  ) + 
  theme(axis.title.y = element_blank(),
        legend.title = element_blank(),
        legend.position = c(0.05, 0.95),
        legend.justification = c(0.05, 0.95)) + 
  labs(x = "[Agonist], M")

参考链接:

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,033评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,725评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,473评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,846评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,848评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,691评论 1 282
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,053评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,700评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,856评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,676评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,787评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,430评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,034评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,990评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,218评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,174评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,526评论 2 343

推荐阅读更多精彩内容