ggplot2画散点图展示恩比德面对不同的防守者的百回合得分

在一个篮球相关的公众号的文章里发现了一张图片

image.png

第一感觉应该是是R语言的ggplot2包做出来的,这么好的学习素材不重复一下岂不是可惜了,遂以关键词“Joel Embiids Points Per 100 Possessions When Guarded By”搜索找到了原文https://www.reddit.com/r/nba/comments/bjuiy4/oc_joel_embiids_points_per_100_possessions/

有的评论提到原始数据来自这个链接 https://stats.nba.com/player/203954/matchups/?sort=POSS&dir=1&Season=2018-19&SeasonType=Regular%20Season&DateFrom=04%2F29%2F2019&DateTo=04%2F30%2F2019

但是自己还没有研究出来如何在这个网站上找到特定的球员面对不同的防守者的得分的相关数据。

找到了原始代码

df %>% 
  ggplot(aes(x = DEF_PLAYER_NAME, y = pts.per.100, size = total.poss, fill = pts.per.100)) + 
  geom_point(alpha = .75, shape = 21, color = 'black') + 
  coord_flip() +
  theme_custom() +
  labs(size = "Total Possessions", 
       title = "Joel Embiid's Points Per 100 Possessions When Guarded By ___", 
       subtitle = "Among players that guarded Embiid at least 50 possesions in 2018-19 (Regular Season + Playoffs)", 
       y = "Points per 100 possessions", 
       x = "") +
  scale_y_continuous(limits = c(15, 55), breaks = seq(15, 55, 5)) +
  scale_size_continuous(range = c(2, 7)) +
  theme(legend.position=c(0.15, 0.835), legend.background = element_rect(fill="floralwhite")) +
  scale_fill_gradient2(guide=FALSE, low = ("#0571b0"), mid = "white",
                         high = ("#ca0020"), midpoint = 38.6) + 
  geom_hline(yintercept = 38.6, linetype = 2, color = 'gray55') +
  theme(plot.title = element_text(face = 'bold', size = 11, hjust = 0.5))  +
  theme(plot.subtitle = element_text(face = 'italic', size = 9, hjust = 0.5)) + 
  annotate(geom = 'label', x= 3, y = 45, label = "Season average\n38.6 pts per 100", family = 'Gill Sans MT', fontface = 'bold', fill = 'floralwhite') +
  theme(plot.margin=unit(c(.75,.25,.5,0),"cm"))

那就不用原始数据了,根据图片和代码自己构造一份数据

根据以上代码可以看到作图的数据总共有三列

  • x是防守者的姓名
  • y是恩比德面对不同的对手百回合得分
  • 还有一列是恩比德面对不同的对手总共的回合数,用来控制点的大小
  • 恩比德面对不同的对手百回合得分 用来映射点的颜色

根据图片可以看到总共有29个防守者,得分范围在每百回合15到55之间,总共的回合数是50到200之间。

首先是构造数据
def_player_name<-paste0("Player","_",1:29)
pts.per.100<-seq(15,55,by=0.5)
total.poss<-seq(50,200,by=1)
df<-data.frame(def_player_name=sample(def_player_name,29,replace = F),
               pts.per.100=sample(pts.per.100,29,replace = F),
               total.poss=sample(total.poss,29,replace = F))
dim(df)
head(df)
基本的散点图
library(ggplot2)
ggplot(df,aes(x=def_player_name,y=pts.per.100,
              size=total.poss,fill=pts.per.100))+
  geom_point(alpha=0.75,shape=21,color='black')
image.png
接下来就是对这幅图进行美化

美化的内容包括

  • 旋转90度
    用到的代码是
ggplot(df,aes(x=def_player_name,y=pts.per.100,
              size=total.poss,fill=pts.per.100))+
  geom_point(alpha=0.75,shape=21,color='black')+
  coord_flip()
image.png
  • 按照得分大小排序
ggplot(df,aes(x=reorder(def_player_name,pts.per.100),
              y=pts.per.100,
              size=total.poss,
              fill=pts.per.100))+
  geom_point(alpha=0.75,shape=21,color='black')+
  coord_flip()
image.png

注意这里是如何实现的,升序和降序是经常用到的

  • 改变主题
    原始代码用到的是 theme_custom()这个函数。我暂时还不知道是哪个包里的,或者是他自己写的。这里我们就不管了,换成theme_bw()这个函数
ggplot(df,aes(x=reorder(def_player_name,pts.per.100),
              y=pts.per.100,
              size=total.poss,
              fill=pts.per.100))+
  geom_point(alpha=0.75,shape=21,color='black')+
  coord_flip()+
  theme_bw()
image.png
  • 接下来是改变点的填充颜色和大小
ggplot(df,aes(x=reorder(def_player_name,pts.per.100),
              y=pts.per.100,
              size=total.poss,
              fill=pts.per.100))+
  geom_point(alpha=0.75,shape=21,color='black')+
  coord_flip()+
  theme_bw()+
  scale_fill_gradient2(guide=FALSE, 
                       low = ("#0571b0"), 
                       mid = "white",
                       high = ("#ca0020"), 
                       midpoint = 38.6)+
  scale_size_continuous(range = c(2, 7))
image.png
  • 更改y轴的显示刻度,添加辅助线
ggplot(df,aes(x=reorder(def_player_name,pts.per.100),
              y=pts.per.100,
              size=total.poss,
              fill=pts.per.100))+
  geom_point(alpha=0.75,shape=21,color='black')+
  coord_flip()+
  theme_bw()+
  scale_fill_gradient2(guide=FALSE, 
                       low = ("#0571b0"), 
                       mid = "white",
                       high = ("#ca0020"), 
                       midpoint = 38.6)+
  scale_size_continuous(range = c(2, 20))+
  scale_y_continuous(limits = c(15, 55), breaks = seq(15, 55, 5)) +
  geom_hline(yintercept = 38.6, linetype = 2, color = 'gray55') 
image.png
  • 更改坐标轴的标签,添加标题
ggplot(df,aes(x=reorder(def_player_name,pts.per.100),
              y=pts.per.100,
              size=total.poss,
              fill=pts.per.100))+
  geom_point(alpha=0.75,shape=21,color='black')+
  coord_flip()+
  theme_bw()+
  scale_fill_gradient2(guide=FALSE, 
                       low = ("#0571b0"), 
                       mid = "white",
                       high = ("#ca0020"), 
                       midpoint = 38.6)+
  scale_size_continuous(range = c(2, 20))+
  scale_y_continuous(limits = c(15, 55), breaks = seq(15, 55, 5)) +
  geom_hline(yintercept = 38.6, linetype = 2, color = 'gray55')+
  labs(size = "Total Possessions", 
       title = "Joel Embiid's Points Per 100 Possessions When Guarded By ___", 
       subtitle = "Among players that guarded Embiid at least 50 possesions in 2018-19 (Regular Season + Playoffs)", 
       y = "Points per 100 possessions", 
       x = "") 
image.png
  • 添加一个注释的标签
ggplot(df,aes(x=reorder(def_player_name,pts.per.100),
              y=pts.per.100,
              size=total.poss,
              fill=pts.per.100))+
  geom_point(alpha=0.75,shape=21,color='black')+
  coord_flip()+
  theme_bw()+
  scale_fill_gradient2(guide=FALSE, 
                       low = ("#0571b0"), 
                       mid = "white",
                       high = ("#ca0020"), 
                       midpoint = 38.6)+
  scale_size_continuous(range = c(2, 20))+
  scale_y_continuous(limits = c(15, 55), breaks = seq(15, 55, 5)) +
  geom_hline(yintercept = 38.6, linetype = 2, color = 'gray55')+
  labs(size = "Total Possessions", 
       title = "Joel Embiid's Points Per 100 Possessions When Guarded By ___", 
       subtitle = "Among players that guarded Embiid at least 50 possesions in 2018-19 (Regular Season + Playoffs)", 
       y = "Points per 100 possessions", 
       x = "") +
  annotate(geom = 'label', x= 3, y = 45, 
           label = "Season average\n38.6 pts per 100", 
           family = 'Times New Roman', 
           fontface = 'bold', 
           fill = 'floralwhite') 
image.png
  • 最后就是对主题的一些细节设置了
ggplot(df,aes(x=reorder(def_player_name,pts.per.100),
              y=pts.per.100,
              size=total.poss,
              fill=pts.per.100))+
  geom_point(alpha=0.75,shape=21,color='black')+
  coord_flip()+
  theme_bw()+
  scale_fill_gradient2(guide=FALSE, 
                       low = ("#0571b0"), 
                       mid = "white",
                       high = ("#ca0020"), 
                       midpoint = 38.6)+
  scale_size_continuous(range = c(2, 20))+
  scale_y_continuous(limits = c(15, 55), breaks = seq(15, 55, 5)) +
  geom_hline(yintercept = 38.6, linetype = 2, color = 'gray55')+
  labs(size = "Total Possessions", 
       title = "Joel Embiid's Points Per 100 Possessions When Guarded By ___", 
       subtitle = "Among players that guarded Embiid at least 50 possesions in 2018-19 (Regular Season + Playoffs)", 
       y = "Points per 100 possessions", 
       x = "") +
  annotate(geom = 'label', x= 3, y = 45, 
           label = "Season average\n38.6 pts per 100", 
           family = 'Times New Roman', 
           fontface = 'bold', 
           fill = 'floralwhite') +
  theme(legend.position=c(0.15, 0.835), 
        legend.background = element_rect(fill="floralwhite"),
        plot.title = element_text(face = 'bold', size = 11, hjust = 0.5),
        plot.subtitle = element_text(face = 'italic', size = 9, hjust = 0.5),
        plot.margin=unit(c(.75,.25,.5,0),"cm"))
image.png

好了,今天的内容就到这里了。

欢迎大家关注我的公众号

小明的数据分析笔记本

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,686评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,668评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,160评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,736评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,847评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,043评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,129评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,872评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,318评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,645评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,777评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,470评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,126评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,861评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,095评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,589评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,687评论 2 351