57、Spark性能优化之数据本地化

数据本地化背景

数据本地化对于Spark Job性能有着巨大的影响。如果数据以及要计算它的代码是在一起的,那么性能当然会非常高。但是,如果数据和计算它的代码是分开的,那么其中之一必须到另外一方的机器上。通常来说,移动代码到其他节点,会比移动数据到代码所在的节点上去,速度要快得多,因为代码比较小。Spark也正是基于这个数据本地化的原则来构建task调度算法的。
数据本地化,指的是,数据离计算它的代码有多近。基于数据距离代码的距离,有几种数据本地化级别:

  1. PROCESS_LOCAL:数据和计算它的代码在同一个JVM进程中。
  2. NODE_LOCAL:数据和计算它的代码在一个节点上,但是不在一个进程中,比如在不同的executor进程中,或者是数据在HDFS文件的block中。
  3. NO_PREF:数据从哪里过来,性能都是一样的。
  4. RACK_LOCAL:数据和计算它的代码在一个机架上。
  5. ANY:数据可能在任意地方,比如其他网络环境内,或者其他机架上。

原理

数据本地化原理.png

Task要处理的partition的数据,在某一个Executor中,TaskScheduler首先会尽量用最好的本地化级别去启动task,也就是说,会尽量在哪个包含了要处理的partition的executor中,去启动task
此时,Executor已经再执行好几个task了,没有空闲资源来执行这个task
默认情况下,spark会等待一会,等待Executor什么时候可以空闲出一个cpu core,从而来启动这个task,让它实现最好的本地化级别
但是如果等待了一会(时间是可以调优的,通过参数设置),发现始终没有等到Executor的core释放,那么会放大一个级别,去尝试启动这个task
如果这个rdd之前持久化过,task会去调用RDD的iterator()方法,然后通过executor关联的BlockManager,来尝试获取数据,BlockManager底层,首先尝试从getLocal()在本地找数据,如果没有找到的话,那么用getRemote(),通过BlockTransferService,链接到有数据的BlockManager,来获取数据
如果没有持久化过,那么就computerOrReadCheckpoint()
如果还是不能启动,继续放大级别

数据本地化优化

Spark倾向于使用最好的本地化级别来调度task,但是这是不可能的。如果没有任何未处理的数据在空闲的executor上,那么Spark就会放低本地化级别。这时有两个选择:第一,等待,直到executor上的cpu释放出来,那么就分配task过去;第二,立即在任意一个executor上启动一个task。
Spark默认会等待一会儿,来期望task要处理的数据所在的节点上的executor空闲出一个cpu,从而将task分配过去。只要超过了时间,那么Spark就会将task分配到其他任意一个空闲的executor上。
可以设置参数,spark.locality系列参数,来调节Spark等待task可以进行数据本地化的时间。spark.locality.wait(3000毫秒)、spark.locality.wait.node、spark.locality.wait.process、spark.locality.wait.rack。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,864评论 6 494
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,175评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,401评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,170评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,276评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,364评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,401评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,179评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,604评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,902评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,070评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,751评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,380评论 3 319
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,077评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,312评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,924评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,957评论 2 351

推荐阅读更多精彩内容

  • 1.1、 分配更多资源 1.1.1、分配哪些资源? Executor的数量 每个Executor所能分配的CPU数...
    miss幸运阅读 3,178评论 3 15
  • 1.分配更多的资源 -- 性能调优的王道 真实项目里的脚本: bin/spark-submit \ --c...
    evan_355e阅读 1,845评论 0 0
  • 1、重构RDD架构和RDD持久化 RDD架构重构与优化尽量去复用RDD,差不多的RDD,可以抽取成一个共同的RDD...
    雪飘千里阅读 1,025评论 0 1
  • 一、诊断内存的消耗 1、spark内存消耗 (1)java对象头:包含一些对象的元信息。 (2)java的Stri...
    蠟筆小噺没有烦恼阅读 3,241评论 0 3
  • Apache Spark 是专为大规模数据处理而设计的快速通用的计算引擎。Spark是UC Berkeley AM...
    大佛爱读书阅读 2,824评论 0 20