from numba import jit
@jit()
def vespagram(array, hil, samp=100, dx=0.004, sl_low=-2, sl_high=2, sl_ds=0.05, win=4, overlap=0.8):
nch, npts = data.shape
winlen = win*samp
n1 = round((0.5*nch*dx*sl_high*samp))
n2 = n1+winlen
interval = round((1-0.8)*400)
slowness = np.arange(sl_low, sl_high+sl_ds, sl_ds)
nslow = slowness.size
win_idx = np.arange(n1,npts-n2,interval)
nwin = win_idx.size
nwin0 = np.arange(0,npts,interval).size
x_array = np.arange(nch) * dx
x_array -= x_array.mean() #km
# print(data.shape)
# print(data.shape)
vesp = np.zeros((nslow, nwin0))
for rc7, win in enumerate(win_idx):
print(rc7)
for k, s, in enumerate(slowness):
ssum = np.zeros(winlen)
cohsum = np.zeros(winlen, dtype = nb.complex128)
for ch, dx in enumerate(x_array):
dt = int(s*dx*samp)
atemp = data[ch,win+dt:win+winlen+dt]
# print(win)
# print(atemp.size)
norm = np.sqrt(np.sum(np.square(atemp)))
atemp = atemp/norm
cohsum = cohsum + data_hil[ch,win+dt:win+winlen+dt]
ssum = ssum + atemp
# print(ssum.size)
ssum = ssum/nch
cohsum = cohsum/nch
ssum = ssum * np.abs(cohsum)**2
# print(np.sum(ssum**2))
vesp[k,rc7+5]=np.sum(ssum**2)
return vesp
from numba import jit
@jit()
import numba as nb
import numpy as np
from numba import jit
@jit()
def compbeam(array, hil, samp=100, dx=0.004, sl_low=-2, sl_high=2, sl_ds=0.05, win=4, overlap=0.8):
nch, npts = array.shape
afinal = np.zeros(npts)
winlen = win*samp
sl_2 = np.zeros(2)
sl_2[0] = np.abs(sl_low)
sl_2[1] = np.abs(sl_high)
sl_max = np.max(sl_2)
n1 = round((0.5*nch*dx*sl_max*samp))
n2 = n1+winlen
interval = round((1-0.8)*400)
slowness = np.arange(sl_low, sl_high+sl_ds, sl_ds)
nslow = slowness.size
win_idx = np.arange(n1,npts-n2,interval)
nwin = win_idx.size
nwin0 = np.arange(0,npts,interval).size
x_array = np.arange(nch) * dx
x_array -= x_array.mean() #km
# print(data.shape)
# print(data.shape)
vesp = np.zeros((nslow, nwin0))
for rc7, win in enumerate(win_idx):
print(rc7)
for k, s, in enumerate(slowness):
ssum = np.zeros(winlen)
cohsum = np.zeros(winlen, dtype = nb.complex128)
for ch, dx in enumerate(x_array):
dt = int(s*dx*samp)
atemp = array[ch,win+dt:win+winlen+dt]
# print(win)
# print(atemp.size)
norm = np.sqrt(np.sum(np.square(atemp)))
atemp = atemp/norm
cohsum = cohsum + hil[ch,win+dt:win+winlen+dt]
ssum = ssum + atemp
# print(ssum.size)
ssum = ssum/nch
cohsum = cohsum/nch
ssum = ssum * np.abs(cohsum)**2
# print(np.sum(ssum**2))
vesp[k,rc7+5]=np.sum(ssum**2)
best_idx = np.argmax(np.abs(vesp[:,rc7]))
ssum[:]=0
cohsum[:]=0;
ssum2=0
emat = np.zeros(nch)
for ch, dx in enumerate(x_array):
dt = int(slowness[best_idx]*dx*samp)
atemp = array[ch,win+dt:win+winlen+dt]
ssum2 = ssum2 + np.mean(atemp**2)
emat[ch] = np.mean(atemp**2)
norm = np.sqrt(np.sum(np.square(atemp)))
atemp = atemp/norm
cohsum = cohsum + hil[ch,win+dt:win+winlen+dt]
ssum = ssum + atemp
ssum=ssum/nch
cohsum=cohsum/nch
ssum = ssum * np.abs(cohsum)**2
ssum2=np.median(emat)
ssum=ssum * ssum2
afinal[win:win+winlen]=afinal[win:win+winlen] + ssum
afinal=afinal/5
return vesp, afinal
im_ = taper_filter(im, 0.5, 1, 100)
hil = scipy.signal.hilbert(im_)
hil = hil/abs(hil)
2022-11-04 vespagram numba edition
最后编辑于 :
©著作权归作者所有,转载或内容合作请联系作者
【社区内容提示】社区部分内容疑似由AI辅助生成,浏览时请结合常识与多方信息审慎甄别。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。
【社区内容提示】社区部分内容疑似由AI辅助生成,浏览时请结合常识与多方信息审慎甄别。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。