DDIA-Chapter3 数据存储与检索

数据存储与检索的相关底层实现与取舍

这一章节讲述了 数据存储与检索 的相关知识,总结一下就是:在不同的应用场景下,如何实现数据的快速检索,而采用不同的存储方案。 本章节讨论了两个存储引擎的实现,分别对应的是 OLAP 和 OLTP 的数据库,即日志结构的存储引擎(LSM Tree)和面向页的存储引擎(B Tree)。

对于一个数据库而言核心就是数据结构,以下将步入正文

哈希索引来解决 append log file 存储的检索问题

首先我们以 key-value 数据的存储来切入,尽管键值对数据并不是唯一的存储数据结构,但是随处可见且是更复杂索引的基础构造模块。
假设数据的存储全部采用追加式的文件组成,文件如下图,那么如何索引如何构造呢?最简单的就是使用 hashMap 来存储索引,key -> 相应的数据的字节偏移量。
[图片上传中...(image-b5319c-1584260887343-6)]

问题:如何避免数据文件过大,导致磁盘空间用尽?

因此我们需要将数据文件切分,即切分为不同的段文件。段文件有新旧之分,每个段文件分别对应维护一个 HashMap。
查找的场景下:从新到旧依次查找不同的 HashMap 即可;
写入的场景下:写入到最新的端的 HashMap 中,并 append 到最新的段文件中。
垃圾数据回收:新旧段文件,可以实现合并和压缩操作,将一些相同键的老数据 delete,只保留每个 key 的最新值, 形成新的段文件。此过程可以在后台进行,且对写入和查找不受影响. 如下图
[图片上传中...(image-838f46-1584260887342-5)]

局限性

  1. 哈希索引必须放置到内存中,如果 key 过多,就很难在内存中容纳。
  2. 区间的查询效率不高,无法顺序扫描区间数据,比如 key 的区间为 A000000 -> A000199 的数据

SSTable 和 内存表

上面讨论的哈希索引的日志段是按照写入顺序排列,并且对于出现在日志中的同一个键,后出现的值优于之前存在的值。
现在要求改变段文件的存储格式,按照 key 字典序来排序,这种格式称之为排序字符串表(SSTable) , 这就要求每个键在同一个段文件中只能出现一次。相比较上述的按照写入顺序 append 的日志段,有如下优点

  1. 合并段文件更为高效,直接就是有序文件的合并排序,相当于磁盘上的归并算法。如果文件合并中,有相同的键,则以段文件时间点更新的为准
  2. 比如在查找某个段文件中的某个特定键时,不再需要维护一个段文件中全部 key 的哈希索引,因为是有序存储的,只需要维护一个稀疏的哈希索引, 如下图
    [图片上传中...(image-d7ca14-1584260887342-1)]

如何构建维护一个 SSTables

基本工作流程如下

  1. 当写入时,将写入数据添加到内存中的平衡树结构中,称之为 内存表
  2. 当内存表到达一个阈值时,将其作为 SSTables 存储到段文件中。因为1中已经维护了一个排序好的数据结构,写入即是有序的。当写入到段文件的过程中,可以继续重新新建一个内存表来提交写入服务,不受影响
  3. 在处理读请求时,首先在内存表中查找该值,如果没有,则继续按照时间的新旧的顺序查找段文件的稀疏索引,以此类推,直到最后一个段文件或找到
  4. 后台线程会周期性或触发式的合并与压缩段文件,来节约空间和减少检索时间
  5. 为了避免内存表因为机器的崩溃或意外丢失,完全可以维护一个内存表日志,每个写入 append 到日志中。且这个文件的生命周期同内存表
    [图片上传中...(image-303663-1584260887341-0)]

那么什么是 LSM-Tree

SSTable 和 内存表共同构成了 LOG-Structured Merge Tree.

性能优化

当一个键不存在时,需要从内存表 -> n 个段文件中进行查找,耗时良久

解决方案:布隆过滤器, 将所有的值都经过 k 次 hash function 后填充到相应的 bit array 中,虽然存在一定程度的误判。造成不存在的 key,可能误判为存在,不过问题不大,大不了多几次IO

[图片上传中...(image-4edcab-1584260887342-4)]

B-Trees

B树作为一种广泛使用的关系型数据库引擎的数据结构,非常流行
和 LSM-Tree 一样,B-Tree 同样保留排序的 KV 键值对,从而实现高效的查找和区间查询。但设计理念完全不同于 LSM-Tree。日志结构索引将数据库分解为可变大小且排序的段文件,相比之下,B-Tree 将数据库分解为固定大小的页,所以B-Tree 的每一层都是一页,相对于磁盘的固定大小的块。
插图
为了使数据库能从崩溃中恢复,或者分裂页时的引用时候不会丢失,所有的写入,都需要使用额外的数据结构来维护 WAL(write-ahead log), 称为重做日志。

为什么 MySQL InnoDB 使用 B+ 树

InnoDB 存储引擎在绝大多数情况下使用 B+ 树建立索引,这是关系型数据库中查找最为常用和有效的索引,但是 B+ 树索引并不能找到一个给定键对应的具体值,它只能找到数据行对应的页,然后数据库把整个页读入到内存中,并在内存中查找具体的数据行(一页的数据量为 1-2000行左右,内存消耗时间一般忽略不计)。

一般都会聚集索引(一般一张表有且仅有一个聚集索引,就是主键索引)和非聚集索引(辅助索引)的区别,聚集索引指的是叶子节点的记录中,会有对应行的完整记录。但是非聚集索引只会有对相关主键的记录,再次查找主键索引来获取数据。

但是又为什么使用 B+ 树?这其中有两个问题,为什么不是哈希索引和B树呢?

  1. 为什么不是哈希索引,因为hash无法达到范围查询的要求。
  2. 为什么不是B树呢?同样是范围查询的问题。B 树与 B+ 树的最大区别就是,B 树可以在非叶结点中存储数据,但是 B+ 树的所有数据其实都存储在叶子节点中,当一个表底层的数据结构是 B 树时,如果是范围查询,则需要多次随机 I/O。而对于B+树时,就直接扫描到叶子节点,直接顺序扫描即可~

[图片上传中...(image-cb3a22-1584260887342-3)]

为什么 MongoDb 使用 B 树

很简单,MongoDB 的设置里面对于范围查询不鼓励,且推荐的JSON设计结构就是不太需要范围查询的,就选择 B 树来降低单独主键查询的命中率,可能省去了n次IO。因为不需要到叶子节点才能获取数据~

对比 B-Trees 和 LSM-Tree

根据经验来说,LSM-Tree 通常写入更快,B-Trees 读取更快。读取 LSM-Tree 会更慢一些,理论上需要读取内存表、多个段文件等。

LSM-Tree 优点

  1. 更高的写入吞吐量,磁盘顺序写比随机写效率和吞吐量更高
  2. 较低的存储开销,因为能有序排列有助于压缩。同时能消除碎片化,相比较 B-Tree 的特性导致某些磁盘空间无法使用

LSM-Tree 缺点

  1. 合并和压缩过程会引起抖动,导致正在进行的读写造成影响
  2. 事务的隔离性在 B-Tree 树上更加好操控,通过键范围上的锁来实现的

列式存储 (LSM-Tree 应用)

列存储的方案很简单,通常的行存储是一行的数据都放置在一起,所有的数据库优化都是面向行数据的。但是在 OLAP 场景下,有些事实表的列非常的多,但是每次查询只需要几十个列,如果按照行来存储的话,就造成了内存 oom 和效率的低下。因此,需要改进存储结构,将其变成列式存储。

不要将一行中的所有值存储在一起,而是将每一列的值存储在一起。如果每个列的值存储于一个单独的文件中,查询的时候只需要读取每个文件中的特定的行数列,将它们组装在一起即可。

[图片上传中...(image-f91872-1584260887342-2)]

列压缩

使用 位图索引

列压缩

单独排列每个列的文件是没有意义的,因为这样就无法知道每一行的列值处于文件的哪一行。因此在n个列值的数据行中,我们需要选定排序键,比如第一顺位排序键A, 第二为B,则按此顺序进行文件排序。因此对于A来说,此文件可以压缩,因为此文件有序,可能有很多重复值。后续的列文件的压缩的可能性和意义都不大,因为不是有序的。

列存储的写入

跟 LSM-Tree 一致,先写进内存表,后续到达阈值之后,再写入各个列的文件中

那么类似于 HBase 的列式存储是如何使用 LSM-Tree 实现的呢?

研究后再补充

参考

  1. DDIA Book
  2. https://draveness.me/whys-the-design-mysql-b-plus-tree
  3. https://draveness.me/mysql-innodb.html
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,657评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,662评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,143评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,732评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,837评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,036评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,126评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,868评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,315评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,641评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,773评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,470评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,126评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,859评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,095评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,584评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,676评论 2 351

推荐阅读更多精彩内容