题目链接
tag:
- Medium;
question:
Given two integers n and k, return all possible combinations of k numbers out of 1 ... n.
Example:
Input: n = 4, k = 2
Output:
[
[2,4],
[3,4],
[2,3],
[1,2],
[1,3],
[1,4],
]
解法一:
思路:这道题让求1到n共n个数字里k个数的组合数的所有情况,还是要用深度优先搜索DFS来解,根据以往的经验,像这种要求出所有结果的集合,一般都是用DFS调用递归来解。那么我们建立一个保存最终结果的大集合res,还要定义一个保存每一个组合的小集合out,每次放一个数到out里,如果out里数个数到了k个,则把out保存到最终结果中,否则在下一层中继续调用递归。网友u010500263的博客里有一张图很好的说明了递归调用的顺序,请点击这里。根据上面分析,可写出代码如下:
class Solution {
public:
vector<vector<int>> combine(int n, int k) {
vector<vector<int>> res;
vector<int> out;
helper(n, k, 1, out, res);
return res;
}
void helper(int n, int k, int level, vector<int>& out, vector<vector<int>>& res) {
if (out.size() == k) {res.push_back(out); return;}
for (int i = level; i <= n; ++i) {
out.push_back(i);
helper(n, k, i + 1, out, res);
out.pop_back();
}
}
};
解法二:
思路:我们再来看一种迭代的写法,也是一种比较巧妙的方法。这里每次先递增最右边的数字,存入结果res中,当右边的数字超过了n,则增加其左边的数字,然后将当前数组赋值为左边的数字,再逐个递增,直到最左边的数字也超过了n,停止循环。对于n=4, k=2时,遍历的顺序如下所示:
0 0 #initialization
1 0
1 1
1 2 #push_back
1 3 #push_back
1 4 #push_back
1 5
2 5
2 2
2 3 #push_back
2 4 #push_back
...
3 4 #push_back
3 5
4 5
4 4
4 5
5 5 #stop
代码如下:
class Solution {
public:
vector<vector<int>> combine(int n, int k) {
vector<vector<int>> res;
vector<int> out(k, 0);
int i = 0;
while (i >= 0) {
++out[i];
if (out[i] > n) --i;
else if (i == k - 1) res.push_back(out);
else {
++i;
out[i] = out[i - 1];
}
}
return res;
}
};