- 概述
- 透视投影
- 正交投影
概述
计算机显示器是一个2D平面。OpenGL渲染的3D场景必须以2D图像方式投影到计算机屏幕上。GL_PROJECTION矩阵用于该投影变换。首先,它将所有定点数据从观察坐标转换到裁减坐标。接着,这些裁减坐标通过除以w分量的方式转换到归一化设备坐标(NDC)。
因此,我们需要记住一点:裁减变换(视锥剔除)与NDC变换都保存在GL_PROJECTION矩阵中。下述章节描述如何从6个限定参数(左、右、下、上、近平面、远平面)构建投影矩阵。
注意,视锥剔除(裁减)在裁减坐标上执行,并且在除以wc之前。裁减坐标xc、yc、zc会与wc做比较检测。如果任一坐标小于-wc或大于wc,则该顶点将会抛弃。
接着,OpenGL重新构建那些裁减掉的多边形的边。
透视投影
在透视投影中,截棱锥体(观察坐标)中的3D点会被映射到立方体(NDC)中。x坐标的范围从[l,f]到[-1,1],y坐标的范围从[b,t]到[-1,1],z坐标的范围从[n,f]到[-1,1]。
注意,观察坐标为右手坐标系,NDC使用左手坐标系。也就是说,位于原点的照相机在观察坐标中看向-Z轴,而在NDC中看向+Z轴。因为glFrustum()只接收正的近平面与远平面距离值,我们需要在构建GL_PROJECTION矩阵时对他们取反。
OpenGL中,观察空间中的3D点被投影到近平面(投影平面)上。下图展示观察空间中的点(xe,ye,ze)如何投影到近平面上的点(xp,yp,zp)。
从视锥体的俯视图看出,使用相似三角形比率计算方式将观察空间的x坐标xe被映射到xp。
从视锥体的侧视图看出,yp也使用相同的方式计算出:
注意,xp与yp二者都依赖于ze,它们与-ze成反比例。也就是说,它们都被-ze除。这是构建GL_PROJECTION矩阵的第一点提示。在观察坐标通过与GL_PROJECTION矩阵相乘变换之后,裁减坐标依旧是其次坐标。它最终通过除以裁减坐标的w分量才变成归一化设备坐标(NDC)。(更详细描述参考OpenGL变换。)
因此,我们可以将裁减坐标的w分量设置为-ze。这样,GL_PROJECTION矩阵的第四行变为(0,0,-1,0)。
接着,我们通过线性关系将xp与yp映射到NDC中的xn与yn:[l,r]=>[-1,1],[b,t]=>[-1,1]。
然后,我们用上面的方程式替换xp与yp。
注意,我们为透视除法(xc/wc, yc/wc)将每个等式相被-ze整除。前面我们已经将wc设置为-ze,大括号中的项为裁减坐标中xc与yc。
从这个等式,我们可以发现GL_PROJECTION矩阵的第一与第二行。
现在,我们仅仅解决GL_PROJECTION矩阵的3行。由于观察空间中的ze总是投影到近平面上的-n点,zn的计算方法与其他坐标的计算方法有稍许不同。不过我们需要唯一的z值来进行裁剪与深度测试。此外,我们也会进行逆投影(逆变换)操作。因为,我们知道z并不依赖于x与y的值,我们借助w分量找寻zn与ze之间的关系。因此,我们可以像这样指定GL_PROJECTION矩阵的第三行:
在观察空间,we等于1。因此,等式变为:
为了计算系数A与B,我们使用(ze,zn)关系式(-n,-1)与(-f,1),且将它们带入到上述等式。
为了求解A与B,重写等式(1):
将等式(1')带入等式(2),然后求解A:
将A带入等式(1)中,求出B:
我们解出A与B。因此ze与zn的关系变为:
最后,我们解出GL_PROJECTION矩阵的所有元素。完整的投影矩阵为:
该投影矩阵为通用截面体。如果视锥体为对称的,即r=-l且t=-b,则矩阵可简化为:
在开始后面讲述之前,请回顾ze与zn之间的关系:等式(3)。你会注意到它是一个有理数方程且ze与zn并非线性关系。也就是说近平面具有非常高的精度,而远平面的精度很低。如果[-n,-f]的范围变得很大,会引起深度精度问题(深度冲突):远平面附近ze的小变化不会影响zn值。为了最小化深度缓存精度问题,n与f的距离应该尽可能小。
正交投影
正交椎体与归一化设备坐标(NDC)
构造正交投影的GL_PROJECTION矩阵比透视投影模式简单很多。
观察空间的xe、ye与ze分量都线性映射到NDC。我们只需将长方体缩放为正方体,然后移动它到原点。让我们使用线性关系推导出GL_PROJECTION中的所有元素。
因为对于正交投影并不需要w分量,GL_PROJECTION矩阵的第4行依旧为(0,0,0,1)。因此,正交投影完整的GL_PROJECTION矩阵为:
如果视锥体是对称的(r=-l且t=-b),它可以进一步简化。
英文原文:http://www.songho.ca/opengl/gl_projectionmatrix.html