OpenGL 投影矩阵

OpenGL Projection Matrix
OpenGL投影矩阵

  • 概述
  • 透视投影
  • 正交投影

概述

计算机显示器是一个2D平面。OpenGL渲染的3D场景必须以2D图像方式投影到计算机屏幕上。GL_PROJECTION矩阵用于该投影变换。首先,它将所有定点数据从观察坐标转换到裁减坐标。接着,这些裁减坐标通过除以w分量的方式转换到归一化设备坐标(NDC)。

因此,我们需要记住一点:裁减变换(视锥剔除)与NDC变换都保存在GL_PROJECTION矩阵中。下述章节描述如何从6个限定参数(左、右、下、上、近平面、远平面)构建投影矩阵。

注意,视锥剔除(裁减)在裁减坐标上执行,并且在除以wc之前。裁减坐标xc、yc、zc会与wc做比较检测。如果任一坐标小于-wc或大于wc,则该顶点将会抛弃。

接着,OpenGL重新构建那些裁减掉的多边形的边。

被视锥裁减的三角形

透视投影

OpenGL透视视锥体与NDC

在透视投影中,截棱锥体(观察坐标)中的3D点会被映射到立方体(NDC)中。x坐标的范围从[l,f]到[-1,1],y坐标的范围从[b,t]到[-1,1],z坐标的范围从[n,f]到[-1,1]。

注意,观察坐标为右手坐标系,NDC使用左手坐标系。也就是说,位于原点的照相机在观察坐标中看向-Z轴,而在NDC中看向+Z轴。因为glFrustum()只接收正的近平面与远平面距离值,我们需要在构建GL_PROJECTION矩阵时对他们取反。

OpenGL中,观察空间中的3D点被投影到近平面(投影平面)上。下图展示观察空间中的点(xe,ye,ze)如何投影到近平面上的点(xp,yp,zp)。

视锥体的俯视图
视锥体的侧视图

从视锥体的俯视图看出,使用相似三角形比率计算方式将观察空间的x坐标xe被映射到xp

从视锥体的侧视图看出,yp也使用相同的方式计算出:

注意,xp与yp二者都依赖于ze,它们与-ze成反比例。也就是说,它们都被-ze除。这是构建GL_PROJECTION矩阵的第一点提示。在观察坐标通过与GL_PROJECTION矩阵相乘变换之后,裁减坐标依旧是其次坐标。它最终通过除以裁减坐标的w分量才变成归一化设备坐标(NDC)。(更详细描述参考OpenGL变换。)

因此,我们可以将裁减坐标的w分量设置为-ze。这样,GL_PROJECTION矩阵的第四行变为(0,0,-1,0)。

接着,我们通过线性关系将xp与yp映射到NDC中的xn与yn:[l,r]=>[-1,1],[b,t]=>[-1,1]。

映射xp到xn
映射yp到yn

然后,我们用上面的方程式替换xp与yp


注意,我们为透视除法(xc/wc, yc/wc)将每个等式相被-ze整除。前面我们已经将wc设置为-ze,大括号中的项为裁减坐标中xc与yc

从这个等式,我们可以发现GL_PROJECTION矩阵的第一与第二行。


现在,我们仅仅解决GL_PROJECTION矩阵的3行。由于观察空间中的ze总是投影到近平面上的-n点,zn的计算方法与其他坐标的计算方法有稍许不同。不过我们需要唯一的z值来进行裁剪与深度测试。此外,我们也会进行逆投影(逆变换)操作。因为,我们知道z并不依赖于x与y的值,我们借助w分量找寻zn与ze之间的关系。因此,我们可以像这样指定GL_PROJECTION矩阵的第三行:

在观察空间,we等于1。因此,等式变为:

为了计算系数A与B,我们使用(ze,zn)关系式(-n,-1)与(-f,1),且将它们带入到上述等式。

为了求解A与B,重写等式(1):

将等式(1')带入等式(2),然后求解A:

将A带入等式(1)中,求出B:

我们解出A与B。因此ze与zn的关系变为:

最后,我们解出GL_PROJECTION矩阵的所有元素。完整的投影矩阵为:

OpenGL透视投影矩阵

该投影矩阵为通用截面体。如果视锥体为对称的,即r=-l且t=-b,则矩阵可简化为:

在开始后面讲述之前,请回顾ze与zn之间的关系:等式(3)。你会注意到它是一个有理数方程且ze与zn并非线性关系。也就是说近平面具有非常高的精度,而远平面的精度很低。如果[-n,-f]的范围变得很大,会引起深度精度问题(深度冲突):远平面附近ze的小变化不会影响zn值。为了最小化深度缓存精度问题,n与f的距离应该尽可能小。

深度缓存精度比较

正交投影


正交椎体与归一化设备坐标(NDC)

构造正交投影的GL_PROJECTION矩阵比透视投影模式简单很多。

观察空间的xe、ye与ze分量都线性映射到NDC。我们只需将长方体缩放为正方体,然后移动它到原点。让我们使用线性关系推导出GL_PROJECTION中的所有元素。

映射Xe到Xn
映射Ye到Yn
映射Ze到Zn

因为对于正交投影并不需要w分量,GL_PROJECTION矩阵的第4行依旧为(0,0,0,1)。因此,正交投影完整的GL_PROJECTION矩阵为:

OpenGL正交投影矩阵

如果视锥体是对称的(r=-l且t=-b),它可以进一步简化。


英文原文:http://www.songho.ca/opengl/gl_projectionmatrix.html

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,012评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,628评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,653评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,485评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,574评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,590评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,596评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,340评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,794评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,102评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,276评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,940评论 5 339
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,583评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,201评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,441评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,173评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,136评论 2 352

推荐阅读更多精彩内容