1. JMM
请你谈谈你对 Volatile 的理解
- 保证可见性
- 不保证原子性
- 禁止指令重排
什么是JMM
JMM : Java内存模型,不存在的东西,概念!约定!
关于JMM的一些同步的约定:
- 线程解锁前,必须把共享变量立刻刷回主存。
- 线程加锁前,必须读取主存中的最新值到工作内存中!
- 加锁和解锁是同一把锁
线程 工作内存 、主内存
8种操作:
内存交互操作有8种,虚拟机实现必须保证每一个操作都是原子的,不可在分的(对于double和long类型的变量来说,load、store、read和write操作在某些平台上允许例外)
- lock (锁定):作用于主内存的变量,把一个变量标识为线程独占状态
- unlock (解锁):作用于主内存的变量,它把一个处于锁定状态的变量释放出来,释放后的变量才可以被其他线程锁定
- read (读取):作用于主内存变量,它把一个变量的值从主内存传输到线程的工作内存中,以便随后的load动作使用
- load (载入):作用于工作内存的变量,它把read操作从主存中变量放入工作内存中
- use (使用):作用于工作内存中的变量,它把工作内存中的变量传输给执行引擎,每当虚拟机遇到一个需要使用到变量的值,就会使用到这个指令
- assign (赋值):作用于工作内存中的变量,它把一个从执行引擎中接受到的值放入工作内存的变量副本中
- store (存储):作用于主内存中的变量,它把一个从工作内存中一个变量的值传送到主内存中,以便后续的write使用
-
write (写入):作用于主内存中的变量,它把store操作从工作内存中得到的变量的值放入主内
存的变量中
JMM对这八种指令的使用,制定了如下规则:
- 不允许read和load、store和write操作之一单独出现。即使用了read必须load,使用了store必须write
- 不允许线程丢弃他最近的assign操作,即工作变量的数据改变了之后,必须告知主存
- 不允许一个线程将没有assign的数据从工作内存同步回主内存
- 一个新的变量必须在主内存中诞生,不允许工作内存直接使用一个未被初始化的变量。就是怼变量实施use、store操作之前,必须经过assign和load操作
- 一个变量同一时间只有一个线程能对其进行lock。多次lock后,必须执行相同次数的unlock才能解锁
- 如果对一个变量进行lock操作,会清空所有工作内存中此变量的值,在执行引擎使用这个变量前,必须重新load或assign操作初始化变量的值
- 如果一个变量没有被lock,就不能对其进行unlock操作。也不能unlock一个被其他线程锁住的变量
- 对一个变量进行unlock操作之前,必须把此变量同步回主内存
问题: 程序不知道主内存的值已经被修改过了
2. Volatile
1、保证可见性
package com.kuang.tvolatile;
import java.util.concurrent.TimeUnit;
public class JMMDemo {
// 不加 volatile 程序就会死循环!
// 加 volatile 可以保证可见性
private volatile static int num = 0;
public static void main(String[] args) { // main
new Thread(()->{ // 线程 1 对主内存的变化不知道的
while (num==0){
}
}).start();
try {
TimeUnit.SECONDS.sleep(1);
} catch (InterruptedException e) {
e.printStackTrace();
}
num = 1;
System.out.println(num);
}
}
2、不保证原子性
原子性 : 不可分割
线程A在执行任务的时候,不能被打扰的,也不能被分割。要么同时成功,要么同时失败。
package com.kuang.tvolatile;
// volatile 不保证原子性
public class VDemo02 {
// volatile 不保证原子性
private volatile static int num = 0;
public static void add(){
num++;
}
public static void main(String[] args) {
//理论上num结果应该为 2 万
for (int i = 1; i <= 20; i++) {
new Thread(()->{
for (int j = 0; j < 1000 ; j++) {
add();
}
}).start();
}
while (Thread.activeCount()>2){ // main gc
Thread.yield();
}
System.out.println(Thread.currentThread().getName() + " " + num);
}
}
如果不加 lock 和 synchronized ,怎么样保证原子性
num++
源码分析:不能保证原子性
使用原子类,解决 原子性问题
num++
改为原子类的AtomicInteger
的方法(CAS)
package com.kuang.tvolatile;
import java.util.concurrent.atomic.AtomicInteger;
// volatile 不保证原子性
public class VDemo02 {
// volatile 不保证原子性
// 原子类的 Integer
private volatile static AtomicInteger num = new AtomicInteger();
public static void add(){
// num++; // 不是一个原子性操作
num.getAndIncrement(); // AtomicInteger + 1 方法, CAS
}
public static void main(String[] args) {
//理论上num结果应该为 2 万
for (int i = 1; i <= 20; i++) {
new Thread(()->{
for (int j = 0; j < 1000 ; j++) {
add();
}
}).start();
}
while (Thread.activeCount()>2){ // main gc
Thread.yield();
}
System.out.println(Thread.currentThread().getName() + " " + num);
}
}
这些类的底层都直接和操作系统挂钩!在内存中修改值!Unsafe
类是一个很特殊的存在!
指令重排
什么是 指令重排:你写的程序,计算机并不是按照你写的那样去执行的。
源代码-->编译器优化的重排--> 指令并行也可能会重排--> 内存系统也会重排---> 执行
处理器在进行指令重排的时候,考虑:数据之间的依赖性!
int x = 1; // 1
int y = 2; // 2
x = x + 5; // 3
y = x * x; // 4
我们所期望的:1234 但是可能执行的时候回变成 2134 1324
可不可能是 4123!
可能造成影响的结果: a b x y 这四个值默认都是 0;
线程A | 线程B |
---|---|
x=a | y=b |
b=1 | a=2 |
正常的结果: x = 0;y = 0;但是可能由于指令重排
线程A | 线程B |
---|---|
b=1 | a=2 |
x=a | y=b |
指令重排导致的诡异结果: x = 2;y = 1;
volatile可以避免指令重排:
内存屏障。CPU指令。作用:
- 保证特定的操作的执行顺序!
- 可以保证某些变量的内存可见性 (利用这些特性volatile实现了可见性)
Volatile 是可以保持 可见性。不能保证原子性,由于内存屏障,可以保证避免指令重排的现象产生!
3. 彻底玩转单例模式
饿汉式 DCL懒汉式,深究!
饿汉式
package com.kuang.single;
// 饿汉式单例
public class Hungry {
// 可能会浪费空间
private byte[] data1 = new byte[1024*1024];
private byte[] data2 = new byte[1024*1024];
private byte[] data3 = new byte[1024*1024];
private byte[] data4 = new byte[1024*1024];
private Hungry(){
}
private final static Hungry HUNGRY = new Hungry();
public static Hungry getInstance(){
return HUNGRY;
}
}
DCL 懒汉式
package com.kuang.single;
import com.sun.corba.se.impl.orbutil.CorbaResourceUtil;
import java.lang.reflect.Constructor;
import java.lang.reflect.Field;
// 懒汉式单例
// 道高一尺,魔高一丈!
public class LazyMan {
private static boolean qinjiang = false;
private LazyMan(){
synchronized (LazyMan.class){
if (qinjiang == false){
qinjiang = true;
}else {
throw new RuntimeException("不要试图使用反射破坏异常");
}
}
}
private volatile static LazyMan lazyMan;
// 双重检测锁模式的 懒汉式单例 DCL懒汉式
public static LazyMan getInstance(){
if (lazyMan==null){
synchronized (LazyMan.class){
if (lazyMan==null){
lazyMan = new LazyMan(); // 不是一个原子性操作
}
}
}
return lazyMan;
}
// 反射!
public static void main(String[] args) throws Exception {
// LazyMan instance = LazyMan.getInstance();
Field qinjiang = LazyMan.class.getDeclaredField("qinjiang");
qinjiang.setAccessible(true);
Constructor<LazyMan> declaredConstructor =
LazyMan.class.getDeclaredConstructor(null);
declaredConstructor.setAccessible(true);
LazyMan instance = declaredConstructor.newInstance();
qinjiang.set(instance,false);
LazyMan instance2 = declaredConstructor.newInstance();
System.out.println(instance);
System.out.println(instance2);
}
}
/**
* 1. 分配内存空间
* 2、执行构造方法,初始化对象
* 3、把这个对象指向这个空间
*
* 123
* 132 A
* B // 此时lazyMan还没有完成构造
*/
静态内部类
package com.kuang.single;
// 静态内部类
public class Holder {
private Holder(){
}
public static Holder getInstace(){
return InnerClass.HOLDER;
}
public static class InnerClass{
private static final Holder HOLDER = new Holder();
}
}
单例不安全,因为反射的存在
枚举
package com.kuang.single;
import java.lang.reflect.Constructor;
import java.lang.reflect.InvocationTargetException;
// enum 是一个什么? 本身也是一个Class类
public enum EnumSingle {
INSTANCE;
public EnumSingle getInstance(){
return INSTANCE;
}
}
class Test{
public static void main(String[] args) throws NoSuchMethodException,
IllegalAccessException, InvocationTargetException, InstantiationException {
EnumSingle instance1 = EnumSingle.INSTANCE;
Constructor<EnumSingle> declaredConstructor =
EnumSingle.class.getDeclaredConstructor(String.class,int.class);
declaredConstructor.setAccessible(true);
EnumSingle instance2 = declaredConstructor.newInstance();
// NoSuchMethodException: com.kuang.single.EnumSingle.<init>()
System.out.println(instance1);
System.out.println(instance2);
}
}
枚举类型的最终反编译源码:
构造方法:private EnumSingle(String s, int i)
,反射时不能用空参构造
// Decompiled by Jad v1.5.8g. Copyright 2001 Pavel Kouznetsov.
// Jad home page: http://www.kpdus.com/jad.html
// Decompiler options: packimports(3)
// Source File Name: EnumSingle.java
package com.kuang.single;
public final class EnumSingle extends Enum
{
public static EnumSingle[] values()
{
return (EnumSingle[])$VALUES.clone();
}
public static EnumSingle valueOf(String name)
{
return (EnumSingle)Enum.valueOf(com/kuang/single/EnumSingle, name);
}
private EnumSingle(String s, int i)
{
super(s, i);
}
public EnumSingle getInstance()
{
return INSTANCE;
}
public static final EnumSingle INSTANCE;
private static final EnumSingle $VALUES[];
static
{
INSTANCE = new EnumSingle("INSTANCE", 0);
$VALUES = (new EnumSingle[] {
INSTANCE
});
}
}
4. 深入理解CAS
什么是 CAS
CAS是compare and swap的缩写,即我们所说的比较交换。cas是一种基于锁的操作,而且是乐观锁。在java中锁分为乐观锁和悲观锁。悲观锁是将资源锁住,等一个之前获得锁的线程释放锁之后,下一个线程才可以访问。而乐观锁采取了一种宽泛的态度,通过某种方式不加锁来处理资源,比如通过给记录加version来获取数据,性能较悲观锁有很大的提高。
package com.kuang.cas;
import java.util.concurrent.atomic.AtomicInteger;
public class CASDemo {
// CAS compareAndSet : 比较并交换!
public static void main(String[] args) {
AtomicInteger atomicInteger = new AtomicInteger(2020);
// 期望、更新
// public final boolean compareAndSet(int expect, int update)
// 如果我期望的值达到了,那么就更新,否则,就不更新, CAS 是CPU的并发原语!
System.out.println(atomicInteger.compareAndSet(2020, 2021));
System.out.println(atomicInteger.get());
atomicInteger.getAndIncrement()
System.out.println(atomicInteger.compareAndSet(2020, 2021));
System.out.println(atomicInteger.get());
}
}
Unsafe 类
CAS : 比较当前工作内存中的值和主内存中的值,如果这个值是期望的,那么则执行操作!如果不是就一直循环!
缺点:
- 循环会耗时
- 一次性只能保证一个共享变量的原子性
- ABA问题
CAS : ABA 问题(狸猫换太子)
package com.kuang.cas;
import java.util.concurrent.atomic.AtomicInteger;
public class CASDemo {
// CAS compareAndSet : 比较并交换!
public static void main(String[] args) {
AtomicInteger atomicInteger = new AtomicInteger(2020);
// 期望、更新
// public final boolean compareAndSet(int expect, int update)
// 如果我期望的值达到了,那么就更新,否则,就不更新, CAS 是CPU的并发原语!
// ============== 捣乱的线程 ==================
System.out.println(atomicInteger.compareAndSet(2020, 2021));
System.out.println(atomicInteger.get());
System.out.println(atomicInteger.compareAndSet(2021, 2020));
System.out.println(atomicInteger.get());
// ============== 期望的线程 ==================
System.out.println(atomicInteger.compareAndSet(2020, 6666));
System.out.println(atomicInteger.get());
}
}
5. 原子引用
解决ABA 问题,引入原子引用! 对应的思想:乐观锁!
带版本号 的原子操作!
AtomicStampedReference
package com.kuang.cas;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicStampedReference;
public class CASDemo {
//AtomicStampedReference 注意,如果泛型是一个包装类,注意对象的引用问题
// 正常在业务操作,这里面比较的都是一个个对象
static AtomicStampedReference<Integer> atomicStampedReference = new
AtomicStampedReference<>(1,1);
// CAS compareAndSet : 比较并交换!
public static void main(String[] args) {
new Thread(()->{
int stamp = atomicStampedReference.getStamp(); // 获得版本号
System.out.println("a1=>"+stamp);
try {
TimeUnit.SECONDS.sleep(1);
} catch (InterruptedException e) {
e.printStackTrace();
}
atomicStampedReference.compareAndSet(1, 2,
atomicStampedReference.getStamp(),
atomicStampedReference.getStamp() + 1);
System.out.println("a2=>"+atomicStampedReference.getStamp());
System.out.println(atomicStampedReference.compareAndSet(2, 1,
atomicStampedReference.getStamp(),
atomicStampedReference.getStamp() + 1));
System.out.println("a3=>"+atomicStampedReference.getStamp());
},"a").start();
// 乐观锁的原理相同!
new Thread(()->{
int stamp = atomicStampedReference.getStamp(); // 获得版本号
System.out.println("b1=>"+stamp);
try {
TimeUnit.SECONDS.sleep(2);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(atomicStampedReference.compareAndSet(1, 6,
stamp, stamp + 1));
System.out.println("b2=>"+atomicStampedReference.getStamp());
},"b").start();
}
}
注意:
Integer 使用了对象缓存机制,默认范围是 -128 ~ 127 ,推荐使用静态工厂方法 valueOf 获取对象实例,而不是 new,因为 valueOf 使用缓存,而 new 一定会创建新的对象分配新的内存空间;
6. 各种锁的理解
6.1 公平锁、非公平锁
公平锁: 非常公平, 不能够插队,必须先来后到!
非公平锁:非常不公平,可以插队 (默认都是非公平)
源码:
public ReentrantLock() {
sync = new NonfairSync();
}
public ReentrantLock(boolean fair) {
sync = fair ? new FairSync() : new NonfairSync();
}
6.2 可重入锁
可重入锁(递归锁)
广义上的可重入锁指的是可重复可递归调用的锁,在外层使用锁之后,在内层仍然可以使用,并且不发生死锁(前提得是同一个对象或者class),这样的锁就叫做可重入锁。ReentrantLock和synchronized都是可重入锁 .
Synchronized
package com.kuang.lock;
import javax.sound.midi.Soundbank;
// Synchronized
public class Demo01 {
public static void main(String[] args) {
Phone phone = new Phone();
new Thread(()->{
phone.sms();
},"A").start();
new Thread(()->{
phone.sms();
},"B").start();
}
}
class Phone{
public synchronized void sms(){
System.out.println(Thread.currentThread().getName() + "sms");
call(); // 这里也有锁
}
public synchronized void call(){
System.out.println(Thread.currentThread().getName() + "call");
}
}
Lock 版
package com.kuang.lock;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
public class Demo02 {
public static void main(String[] args) {
Phone2 phone = new Phone2();
new Thread(()->{
phone.sms();
},"A").start();
new Thread(()->{
phone.sms();
},"B").start();
}
}
class Phone2{
Lock lock = new ReentrantLock();
public void sms(){
lock.lock(); // 细节问题:lock.lock(); lock.unlock(); // lock 锁必须配对,否
则就会死在里面
lock.lock();
try {
System.out.println(Thread.currentThread().getName() + "sms");
call(); // 这里也有锁
} catch (Exception e) {
e.printStackTrace();
} finally {
lock.unlock();
lock.unlock();
}
}
public void call(){
lock.lock();
try {
System.out.println(Thread.currentThread().getName() + "call");
} catch (Exception e) {
e.printStackTrace();
} finally {
lock.unlock();
}
}
}
6.3 自旋锁
spinlock
是指当一个线程在获取锁的时候,如果锁已经被其它线程获取,那么该线程将循环等待,然后不断的判断锁是否能够被成功获取,直到获取到锁才会退出循环。
我们来自定义一个锁测试
package com.kuang.lock;
import java.util.concurrent.atomic.AtomicReference;
/**
* 自旋锁
*/
public class SpinlockDemo {
// int 0
// Thread null
AtomicReference<Thread> atomicReference = new AtomicReference<>();
// 加锁
public void myLock(){
Thread thread = Thread.currentThread();
System.out.println(Thread.currentThread().getName() + "==> mylock");
// 自旋锁
while (!atomicReference.compareAndSet(null,thread)){
}
}
// 解锁
// 加锁
public void myUnLock(){
Thread thread = Thread.currentThread();
System.out.println(Thread.currentThread().getName() + "==> myUnlock");
atomicReference.compareAndSet(thread,null);
}
}
测试
package com.kuang.lock;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.ReentrantLock;
public class TestSpinLock {
public static void main(String[] args) throws InterruptedException {
// ReentrantLock reentrantLock = new ReentrantLock();
// reentrantLock.lock();
// reentrantLock.unlock();
// 底层使用的自旋锁CAS
SpinlockDemo lock = new SpinlockDemo();
new Thread(()-> {
lock.myLock();
try {
TimeUnit.SECONDS.sleep(5);
} catch (Exception e) {
e.printStackTrace();
} finally {
lock.myUnLock();
}
},"T1").start();
TimeUnit.SECONDS.sleep(1);
new Thread(()-> {
lock.myLock();
try {
TimeUnit.SECONDS.sleep(1);
} catch (Exception e) {
e.printStackTrace();
} finally {
lock.myUnLock();
}
},"T2").start();
}
}
6.4 死锁
死锁是什么
线程死锁是指由于两个或者多个线程互相持有对方所需要的资源,导致这些线程处于等待状态,无法前往执行。当线程进入对象的synchronized代码块时,便占有了资源,直到它退出该代码块或者调用wait方法,才释放资源,在此期间,其他线程将不能进入该代码块。当线程互相持有对方所需要的资源时,会互相等待对方释放资源,如果线程都不主动释放所占有的资源,将产生死锁。
当然死锁的产生是必须要满足一些特定条件的:
- 互斥条件:进程对于所分配到的资源具有排它性,即一个资源只能被一个进程占用,直到被该进程释放
- 请求和保持条件:一个进程因请求被占用资源而发生阻塞时,对已获得的资源保持不放。
- 不剥夺条件:任何一个资源在没被该进程释放之前,任何其他进程都无法对他剥夺占用
- 循环等待条件:当发生死锁时,所等待的进程必定会形成一个环路(类似于死循环),造成永久阻塞。
死锁测试,怎么排除死锁:
package com.kuang.lock;
import com.sun.org.apache.xpath.internal.SourceTree;
import java.util.concurrent.TimeUnit;
public class DeadLockDemo {
public static void main(String[] args) {
String lockA = "lockA";
String lockB = "lockB";
new Thread(new MyThread(lockA, lockB), "T1").start();
new Thread(new MyThread(lockB, lockA), "T2").start();
}
}
class MyThread implements Runnable{
private String lockA;
private String lockB;
public MyThread(String lockA, String lockB) {
this.lockA = lockA;
this.lockB = lockB;
}
@Override
public void run() {
synchronized (lockA){
System.out.println(Thread.currentThread().getName() +
"lock:"+lockA+"=>get"+lockB);
try {
TimeUnit.SECONDS.sleep(2);
} catch (InterruptedException e) {
e.printStackTrace();
}
synchronized (lockB){
System.out.println(Thread.currentThread().getName() +
"lock:"+lockB+"=>get"+lockA);
}
}
}
}
解决问题
-
使用
jps -l
定位进程号
-
使用
jstack 进程号
找到死锁问题
面试,工作中! 排查问题:
- 日志
- 堆栈