Given an array of integers sorted in ascending order, find the starting and ending position of a given target value.
Your algorithm's runtime complexity must be in the order of O(log n).
If the target is not found in the array, return [-1, -1].
For example,
Given [5, 7, 7, 8, 8, 10] and target value 8,
return [3, 4].
Solution1:
思路:
两次二分查找分别查找target的start_index和end_index,
为处理重复target在nums中的情况,将nums[mid]==target的情况specify:
(1)在二分查找start_index时,当nums[mid]==target时: j = mid使得能够继续向左查找到target的起点
(1)在二分查找end_index时,当nums[mid]==target时: i = mid使得能够继续向右查找到target的起点,但因为mid is biased to the left when mid = (i + j) / 2 比如[0, 1, 2, 3] mid = 1 但其实应该是1.5,这样因为偏向左所以会导致getting stuch when 比如 [7, 8]找7,mid无法到8。所以需要当找end_index时要向右biased, 即int mid = (i + j + 1) / 2
Time Complexity: O(logN) Space Complexity: O(1)
Solution2:BinarySearch Template
思路:
Time Complexity: O(logN) Space Complexity: O(1)
Solution1 Code:
class Solution {
public int[] searchRange(int[] nums, int target) {
if(nums == null || nums.length == 0) return new int[]{-1, -1};
if(nums.length == 1) {
return nums[0] == target ? new int[]{0, 0} : new int[]{-1, -1};
}
int i = 0, j = nums.length - 1;
int ret[] = new int[]{-1, -1};
// Search for the left one
while (i < j) {
int mid = (i + j) / 2;
if(nums[mid] < target) i = mid + 1;
else if(nums[mid] > target) j = mid - 1;
else j = mid;
}
if (nums[i] != target) return ret;
else ret[0] = i;
// Search for the right one
j = nums.length - 1;
while(i < j) {
int mid = (i + j + 1) / 2; // Made mid biased to the right
if(nums[mid] < target) i = mid + 1;
else if(nums[mid] > target) j = mid - 1;
else i = mid;
}
ret[1] = j;
return ret;
}
}
Solution2 BinarySearch Template Code:
class Solution {
public int[] searchRange(int[] nums, int target) {
int[] res = new int[]{-1, -1};
if(nums == null || nums.length == 0) return res;
// find left border
int left = 0, right = nums.length - 1;
while(left + 1 < right) {
int mid = left + (right - left) / 2;
if(nums[mid] == target) {
right = mid;
}
else if(nums[mid] < target) {
left = mid;
}
else {
right = mid;
}
}
if(nums[left] == target) {
res[0] = left;
}
else if(nums[right] == target) {
res[0] = right;
}
// find right
left = 0; right = nums.length - 1;
while(left + 1 < right) {
int mid = left + (right - left) / 2;
if(nums[mid] == target) {
left = mid;
}
else if(nums[mid] < target) {
left = mid;
}
else {
right = mid;
}
}
if(nums[right] == target) {
res[1] = right;
}
else if(nums[left] == target) {
res[1] = left;
}
return res;
}
}