第一章第2题:计算圆柱的表面积与体积
import math
def comput(r,h):
# 计算表面积 S=2πrh+2πr^2
S = 2*math.pi*r*h + 2*math.pi*r**2
# 计算体积 V=πr^2*h
V = math.pi*r**2*h
return S,
S,V = comput(10,11)
第二章第2题:
import numpy as np
def cap_2_2(N1):
# 1.
N4 = np.load("N4.npy")
# print(N4)
# 2.
res = N4[0,[1,3]]
res2 = N4[2,[0,4]]
N5 = np.array([res,res2])
# print(N5)
# 3.
N6 = np.hstack((N1,N5.flatten()))
print(N6)
N1 = cap_2_1()
cap_2_2(N1)
第三章第2题
import pandas as pd
def cap_3_2():
df = pd.read_excel("1(1).xls")
# print(df)
df1 = df.iloc[:,2:]
Nt = df1.values
# print(type(Nt))
TF = (df["交易日期"]<="2017-01-16") & (df["交易日期"]>="2017-01-05")
# print(TF)
S = Nt[TF==True][:,1].sum()
print(S)
cap_3_2()
第四章练习题
import pandas as pd
from matplotlib import pyplot as plt
def cap_4_1():
# 1.
df = pd.read_excel("4.xls",index_col=0)
# print(df)
# 2.
df1 = df.loc["2018/1/1":"2018/1/10",:]
plt.plot(df1.index,df1["猪肉价格"],label="pork")
plt.plot(df1.index,df1["牛肉价格"],label="beef")
plt.legend()
plt.xticks(rotation=45)
plt.show()
# 3.
fig,ax = plt.subplots(2,1)
ax[0].plot(df.index,df["猪肉价格"])
ax[1].plot(df.index,df["牛肉价格"])
plt.show()
cap_4_1()
第五章第2题
# 导入逻辑回归模型
from sklearn.linear_model import LogisticRegression
# 导入支持向量机
from sklearn.svm import SVC
# 导入深度学习
from sklearn.neural_network import MLPClassifier
def cap_5_2():
df = pd.read_excel("3(1).xls",index_col=0)
# 构建训练集的 特征值 与 标签值
train_df = df.loc[1:20,:]
# print(train_df)
train_features = train_df.loc[:,"XI":"X3"].values
train_label = train_df.loc[:,"Y"].values
# print(train_features.dtype,train_label.dtype)
# 构建测试集的 特征值
test_df = df.loc[21:,"XI":"X3"].values
# print(test_df)
# 使用逻辑回归训练
lgr_model = LogisticRegression()
lgr_model.fit(train_features,train_label.astype("int"))
lgr_pred = lgr_model.predict(test_df)
print(f"逻辑回归算法预测为:{lgr_pred}")
# 使用支持向量机模型
svm_model = SVC()
svm_model.fit(train_features, train_label.astype("int"))
svm_pred = svm_model.predict(test_df)
print(f"支持向量机算法预测为:{svm_pred}")
# 神经网络算法
mlp_model = MLPClassifier()
mlp_model.fit(train_features, train_label.astype("int"))
mlp_pred = mlp_model.predict(test_df)
print(f"神经网络算法预测为:{mlp_pred}")
cap_5_2()