Problem
Given a sorted array of integers, find the starting and ending position of a given target value.
Your algorithm's runtime complexity must be in the order of O(log n).
If the target is not found in the array, return [-1, -1].
For example, Given [5, 7, 7, 8, 8, 10] and target value 8, return [3, 4].
Solution (JAVA)
public class Solution {
public int[] searchRange(int[] nums, int target) {
// 找到左边界
int front = search(nums, target, "front");
// 找到右边界
int rear = search(nums, target, "rear");
int[] res = {front, rear};
return res;
}
public int search(int[] nums, int target, String type){
int min = 0, max = nums.length - 1;
while(min <= max){
int mid = min + (max - min) / 2;
if(nums[mid] > target){
max = mid - 1;
} else if(nums[mid] < target){
min = mid + 1;
} else {
// 对于找左边的情况,要判断左边的数是否重复
if(type == "front"){
if(mid == 0) return 0;
if(nums[mid] != nums[mid - 1]) return mid;
max = mid - 1;
} else {
// 对于找右边的情况,要判断右边的数是否重复
if(mid == nums.length - 1) return nums.length - 1;
if(nums[mid] != nums[mid + 1]) return mid;
min = mid + 1;
}
}
}
//没找到该数返回-1
return -1;
}
}
Discussion
这道题的本质是就是找到相同值的上下限位置,基本的方法就是二分查找。在找到第一个值之后,我们需要确定这个值的上下位置。在子区间中,我们既可以继续使用二分查找,也可以使用线性的查找方式。(这里的结局方案显然是使用了二分的方式)