HDU 3923 Invoker (polya 模板题)

裸的模板题,除2n的时候用了一下费马小定理
费马小定理:

特别的,当p为素数时,x无法被p整除,φ(p)=p-1,于是便有费马小定理Xp-1≡1(mod p)
在p是素数时,对任意正整数x都有Xp≡X(mod p)

于是对于a的逆元x,有ax≡1(mod m),对于a,m互素且m为素数时,有x=am-2,于是我们可以通过快速幂快速求出a的逆元。
另外,借助素数筛,我们还可以很快的求出1-n的欧拉函数值。每当我们找到一个素数,就把他的倍数的欧拉函数值乘上(p-1)/p.
而且,借助费马小定理我们可以实现对除法取模。

#include<stdio.h>
#include<string.h>
#include<math.h>
#include<iostream>
#include<algorithm>
#include<vector>
#include<stack>
using namespace std;

#define LL long long

const LL mod = 1e9+7;

LL pow_mod(LL a,LL b)
{
    LL s = 1;
    while(b)
    {
        if(b&1)
          s = (s*a)%mod;
        a = (a*a)%mod;
        b = b>>1;
    }
    return s;
}

LL polya(LL m,LL n)
{
    LL i,ans = 0;
    for(i=1;i<=n;i++)
    {
        ans += pow_mod(m,__gcd(i,n));
    }
    if(n&1) ans += n*pow_mod(m,n/2+1);
    else ans += n/2*pow_mod(m,n/2) + n/2*pow_mod(m,n/2+1);
    ans = ans%mod * pow_mod(2*n,mod-2)%mod;
    return ans;
}

int main()
{
    int T;
    int cas = 1;
    scanf("%d",&T);
    while(T--)
    {
        int m,n;
        scanf("%d%d",&m,&n);
        printf("Case #%d: %d\n",cas++,polya(m,n));
    }
}

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,922评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,591评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,546评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,467评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,553评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,580评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,588评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,334评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,780评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,092评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,270评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,925评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,573评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,194评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,437评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,154评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,127评论 2 352

推荐阅读更多精彩内容

  • RSA加密是非对称加密,由瑞弗斯特(Ron Rivest),沙米尔(Adi Shamir)和阿德来门(Len Ad...
    TIME_for阅读 1,807评论 0 5
  • 归去来兮。 1.1 说明 本篇为《挑战程序设计竞赛(第2版)》[http://www.ituring.com.cn...
    尤汐Yogy阅读 14,321评论 0 160
  • 姓名:李浩然 学号:16030410020 转自:http://blog.csdn.net/Dreaming_My...
    洛花无阅读 2,617评论 0 1
  • 有些东西是要珍惜的,错过了就不属于自己了;要做的事,是要趁早的,错过了时间就化为乌有了。 那是儿...
    红利lihong阅读 573评论 0 19
  • 相遇不必太早,合适就好。我怕过早的相遇,会像过早开放的玫瑰,过早的枯萎。如果允许,我想在我需要安定的时候遇见你,...
    YYQ以我之名冠你之姓阅读 293评论 0 1