cs231n assignment1 knn

实现compute_distances_two_loops

def compute_distances_two_loops(self, X):
    """
    Compute the distance between each test point in X and each training point
    in self.X_train using a nested loop over both the training data and the 
    test data.

    Inputs:
    - X: A numpy array of shape (num_test, D) containing test data.

    Returns:
    - dists: A numpy array of shape (num_test, num_train) where dists[i, j]
      is the Euclidean distance between the ith test point and the jth training
      point.
    """
    num_test = X.shape[0]
    num_train = self.X_train.shape[0]
    dists = np.zeros((num_test, num_train))
    for i in xrange(num_test):
      for j in xrange(num_train):
        #####################################################################
        # TODO:                                                             #
        # Compute the l2 distance between the ith test point and the jth    #
        # training point, and store the result in dists[i, j]. You should   #
        # not use a loop over dimension.                                    #
        #####################################################################
        dists[i][j] = np.sqrt(np.sum(np.square(X[i,:] - self.X_train[j,:])))
        #####################################################################
        #                       END OF YOUR CODE                            #
        #####################################################################
    return dists

实现predict_labels

 def predict_labels(self, dists, k=1):
    """
    Given a matrix of distances between test points and training points,
    predict a label for each test point.

    Inputs:
    - dists: A numpy array of shape (num_test, num_train) where dists[i, j]
      gives the distance betwen the ith test point and the jth training point.

    Returns:
    - y: A numpy array of shape (num_test,) containing predicted labels for the
      test data, where y[i] is the predicted label for the test point X[i].  
    """
    num_test = dists.shape[0]
    y_pred = np.zeros(num_test)
    for i in xrange(num_test):
      # A list of length k storing the labels of the k nearest neighbors to
      # the ith test point.
      closest_y = []
      #########################################################################
      # TODO:                                                                 #
      # Use the distance matrix to find the k nearest neighbors of the ith    #
      # testing point, and use self.y_train to find the labels of these       #
      # neighbors. Store these labels in closest_y.                           #
      # Hint: Look up the function numpy.argsort.                             #
      #########################################################################
      sorted_vector = np.argsort(dists[i,:])
      # print sorted_vector[:k]
      closest_y = []
      closest_y = self.y_train[sorted_vector[:k]]
      # print closest_y
      #########################################################################
      # TODO:                                                                 #
      # Now that you have found the labels of the k nearest neighbors, you    #
      # need to find the most common label in the list closest_y of labels.   #
      # Store this label in y_pred[i]. Break ties by choosing the smaller     #
      # label.                                                                #
      #########################################################################
 
      # appear_times:
      #   key: the label
      #   value: the appear times of the label
      appear_times = {}
      for label in closest_y:
        if label in appear_times:
          appear_times[label] += 1
        else:
          appear_times[label] = 0

      # find most commen label
      y_pred[i] = max(appear_times, key=lambda x: appear_times[x])

      #########################################################################
      #                           END OF YOUR CODE                            # 
      #########################################################################

    return y_pred

预测准确率

k=1时

# Now implement the function predict_labels and run the code below:
# We use k = 1 (which is Nearest Neighbor).
y_test_pred = classifier.predict_labels(dists, k=1)

# Compute and print the fraction of correctly predicted examples
num_correct = np.sum(y_test_pred == y_test)
accuracy = float(num_correct) / num_test
print 'Got %d / %d correct => accuracy: %f' % (num_correct, num_test, accuracy)

Got 137 / 500 correct => accuracy: 0.274000

k=5时

y_test_pred = classifier.predict_labels(dists, k=5)
num_correct = np.sum(y_test_pred == y_test)
accuracy = float(num_correct) / num_test
print 'Got %d / %d correct => accuracy: %f' % (num_correct, num_test, accuracy)

Got 142 / 500 correct => accuracy: 0.284000

compute_distances_one_loop

def compute_distances_one_loop(self, X):
    """
    Compute the distance between each test point in X and each training point
    in self.X_train using a single loop over the test data.

    Input / Output: Same as compute_distances_two_loops
    """
    num_test = X.shape[0]
    num_train = self.X_train.shape[0]
    dists = np.zeros((num_test, num_train))
    for i in xrange(num_test):
      #######################################################################
      # TODO:                                                               #
      # Compute the l2 distance between the ith test point and all training #
      # points, and store the result in dists[i, :].                        #
      #######################################################################
      dists[i] = np.sqrt(np.sum(np.square(self.X_train - X[i]), axis=1))
      #######################################################################
      #                         END OF YOUR CODE                            #
      #######################################################################
    return dists

Difference was: 0.000000
Good! The distance matrices are the same

计算结果的速度更快了,而且结果一致

此处用到了numpy的二维数组减一维数组

# 二维数组减一维数组
a = np.array([1,2,3])
b = np.ones([2,3])
a - b

array([[ 0., 1., 2.],
[ 0., 1., 2.]])

cross-validation

num_folds = 5
k_choices = [1, 3, 5, 8, 10, 12, 15, 20, 50, 100]

X_train_folds = []
y_train_folds = []
################################################################################
# TODO:                                                                        #
# Split up the training data into folds. After splitting, X_train_folds and    #
# y_train_folds should each be lists of length num_folds, where                #
# y_train_folds[i] is the label vector for the points in X_train_folds[i].     #
# Hint: Look up the numpy array_split function.                                #
################################################################################
X_train_folds = np.array_split(X_train, num_folds)
Y_train_folds = np.array_split(y_train, num_folds)
################################################################################
#                                 END OF YOUR CODE                             #
################################################################################

# A dictionary holding the accuracies for different values of k that we find
# when running cross-validation. After running cross-validation,
# k_to_accuracies[k] should be a list of length num_folds giving the different
# accuracy values that we found when using that value of k.
k_to_accuracies = {}


################################################################################
# TODO:                                                                        #
# Perform k-fold cross validation to find the best value of k. For each        #
# possible value of k, run the k-nearest-neighbor algorithm num_folds times,   #
# where in each case you use all but one of the folds as training data and the #
# last fold as a validation set. Store the accuracies for all fold and all     #
# values of k in the k_to_accuracies dictionary.                               #
################################################################################
for k in k_choices:
    accuracy_sum = 0
    k_to_accuracies[k] = []
    for f in xrange(num_folds):    
        x_trai = np.array(X_train_folds[:f] + X_train_folds[f+1:])
        y_trai = np.array(Y_train_folds[:f] + Y_train_folds[f+1:])
        
        x_trai = x_trai.reshape(-1, x_trai.shape[2])
        y_trai = y_trai.reshape(-1)
        
        x_vali = np.array(X_train_folds[f])
        y_vali = np.array(Y_train_folds[f])
        
        classifier.train(x_trai, y_trai)
        dists = classifier.compute_distances_no_loops(x_vali)
        y_vali_pred = classifier.predict_labels(dists, k=k)

        # Compute and print the fraction of correctly predicted examples
        num_correct = np.sum(y_vali_pred == y_vali)
        acc = float(num_correct) / y_vali.shape[0]
        k_to_accuracies[k].append(acc)
################################################################################
#                                 END OF YOUR CODE                             #
################################################################################

# Print out the computed accuracies
for k in sorted(k_to_accuracies):
    for accuracy in k_to_accuracies[k]:
        print 'k = %d, accuracy = %f' % (k, accuracy)

k = 1, accuracy = 0.263000
k = 1, accuracy = 0.257000
k = 1, accuracy = 0.264000
k = 1, accuracy = 0.278000
k = 1, accuracy = 0.266000
k = 3, accuracy = 0.241000
k = 3, accuracy = 0.249000
k = 3, accuracy = 0.243000
k = 3, accuracy = 0.273000
k = 3, accuracy = 0.264000
k = 5, accuracy = 0.258000
k = 5, accuracy = 0.273000
k = 5, accuracy = 0.281000
k = 5, accuracy = 0.290000
k = 5, accuracy = 0.272000
k = 8, accuracy = 0.263000
k = 8, accuracy = 0.288000
k = 8, accuracy = 0.278000
k = 8, accuracy = 0.285000
k = 8, accuracy = 0.277000
k = 10, accuracy = 0.265000
k = 10, accuracy = 0.296000
k = 10, accuracy = 0.278000
k = 10, accuracy = 0.284000
k = 10, accuracy = 0.286000
k = 12, accuracy = 0.260000
k = 12, accuracy = 0.294000
k = 12, accuracy = 0.281000
k = 12, accuracy = 0.282000
k = 12, accuracy = 0.281000
k = 15, accuracy = 0.255000
k = 15, accuracy = 0.290000
k = 15, accuracy = 0.281000
k = 15, accuracy = 0.281000
k = 15, accuracy = 0.276000
k = 20, accuracy = 0.270000
k = 20, accuracy = 0.281000
k = 20, accuracy = 0.280000
k = 20, accuracy = 0.282000
k = 20, accuracy = 0.284000
k = 50, accuracy = 0.271000
k = 50, accuracy = 0.288000
k = 50, accuracy = 0.278000
k = 50, accuracy = 0.269000
k = 50, accuracy = 0.266000
k = 100, accuracy = 0.256000
k = 100, accuracy = 0.270000
k = 100, accuracy = 0.263000
k = 100, accuracy = 0.256000
k = 100, accuracy = 0.263000

选取最佳的k

# Based on the cross-validation results above, choose the best value for k,   
# retrain the classifier using all the training data, and test it on the test
# data. You should be able to get above 28% accuracy on the test data.
best_k = 7

classifier = KNearestNeighbor()
classifier.train(X_train, y_train)
y_test_pred = classifier.predict(X_test, k=best_k)

# Compute and display the accuracy
num_correct = np.sum(y_test_pred == y_test)
accuracy = float(num_correct) / num_test
print 'Got %d / %d correct => accuracy: %f' % (num_correct, num_test, accuracy)

Got 141 / 500 correct => accuracy: 0.282000

可见,k = 7比较好

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,470评论 6 501
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,393评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,577评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,176评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,189评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,155评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,041评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,903评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,319评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,539评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,703评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,417评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,013评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,664评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,818评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,711评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,601评论 2 353

推荐阅读更多精彩内容

  • 跟着cs231n assignment1的knn部分的notebook引导,把这个作业做完了。knn的算法本身很简...
    xionghuisquall阅读 5,227评论 0 1
  • assignment1 学习记录(做的过程中写个提纲,做完了再完善一下说不定是要理解深刻一点,总之写下来没坏处,就...
    付义海阅读 700评论 2 0
  • 难得周末,却是小雨绵绵,让人慵懒不堪。尤其是来了亲戚的我,被床和热水袋封印了一整个下午。 终于亲戚放过了我,我得以...
    几层碎碎念阅读 208评论 0 2
  • 西贝卖的是莜面吗? No No No 贾总卖的是一种生活方式,背后是绿色、健康…… 大董卖的是烤鸭吗? No No...
    恢恢_小慧阅读 289评论 0 0
  • 001 自我设限,把时间充分利用起来 把精力放在最重要的事情上,而不是想着同时做好几件事。这样你既不用承担同时做好...
    饼姑娘阅读 109评论 0 2