03R语言序列数据挖掘

Eclat
Eclat 算法用于频繁项集的挖掘。这种情况下,我们寻找行为相似的模式,与之相对的是寻找不规则模式(与处理其他数据挖掘的方法类似)。 Algorithm 通过数据中的交集来估算同时频繁出现事件候选项(如购物车项目)的支持度。然后通过对频繁候选项进行测试来证实数据集中的模式。

1,使用 eclat 找到成年人行为的相似点

> library(Matrix)
Warning message:
程辑包‘Matrix’是用R版本3.6.3 来建造的 
> library(arules)

载入程辑包:‘arules’

The following objects are masked from ‘package:base’:

    abbreviate, write

Warning message:
程辑包‘arules’是用R版本3.6.3 来建造的 
> data("Adult")
> dim(Adult)
[1] 48842   115
> summary(Adult)
transactions as itemMatrix in sparse format with
 48842 rows (elements/itemsets/transactions) and
 115 columns (items) and a density of 0.1089939 

most frequent items:
           capital-loss=None            capital-gain=None 
                       46560                        44807 
native-country=United-States                   race=White 
                       43832                        41762 
           workclass=Private                      (Other) 
                       33906                       401333 

element (itemset/transaction) length distribution:
sizes
    9    10    11    12    13 
   19   971  2067 15623 30162 

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
   9.00   12.00   13.00   12.53   13.00   13.00 

includes extended item information - examples:
           labels variables      levels
1       age=Young       age       Young
2 age=Middle-aged       age Middle-aged
3      age=Senior       age      Senior

includes extended transaction information - examples:
  transactionID
1             1
2             2
3             3

检查最终结果时,我们会注意到以下细节:
摘要共 48842 行,115 列。
已列出常见项目:白种人。
有很多描述符,如 age=Young。

2,查找数据集中的频繁项目

> data("Adult")
> itemsets <- eclat(Adult)
Eclat

parameter specification:
 tidLists support minlen maxlen            target  ext
    FALSE     0.1      1     10 frequent itemsets TRUE

algorithmic control:
 sparse sort verbose
      7   -2    TRUE

Absolute minimum support count: 4884 

create itemset ... 
set transactions ...[115 item(s), 48842 transaction(s)] done [0.04s].
sorting and recoding items ... [31 item(s)] done [0.01s].
creating bit matrix ... [31 row(s), 48842 column(s)] done [0.00s].
writing  ... [2616 set(s)] done [0.01s].
Creating S4 object  ... done [0.00s].

默认值已发现 2616 个频繁集合。如果我们寻找前五个集合,将会看到下列输出数据:

> itemsets.sorted <- sort(itemsets)
> itemsets.sorted[1:5]

以下是对之前输出数据的研究所得:
普查数据中的大多数人未要求资本损失或资本利得(这种财政税收事件并非正常状态)。
大多数人来自美国。
大多数是白种人。

3,集中于最高频率的示例
为了进一步证实数据,我们可以将范围缩减至数据集中出现的最高频率(可以通过调节 minlen 参数直至处理完一项集合来实现操作):

> itemsets <- eclat(Adult, parameter=list(minlen=9))
Eclat

parameter specification:
 tidLists support minlen maxlen            target  ext
    FALSE     0.1      9     10 frequent itemsets TRUE

algorithmic control:
 sparse sort verbose
      7   -2    TRUE

Absolute minimum support count: 4884 

create itemset ... 
set transactions ...[115 item(s), 48842 transaction(s)] done [0.04s].
sorting and recoding items ... [31 item(s)] done [0.01s].
creating bit matrix ... [31 row(s), 48842 column(s)] done [0.00s].
writing  ... [1 set(s)] done [0.00s].
Creating S4 object  ... done [0.00s].
> inspect(itemsets)
    items                                 support transIdenticalToItemsets count
[1] {age=Middle-aged,                                                           
     workclass=Private,                                                         
     marital-status=Married-civ-spouse,                                         
     relationship=Husband,                                                      
     race=White,                                                                
     sex=Male,                                                                  
     capital-gain=None,                                                         
     capital-loss=None,                                                         
     native-country=United-States}      0.1056673                     5161  5161

按照预期,由一位美国本土且拥有工作的已婚男士填写普查数据表格。

arulesNBMiner
arulesNBMiner 是一个功能包,用于寻找一个集合中两个或两个以上项目的共现。底层模型,即负二项式模型,允许高度偏态次数分配,否则会很难确定最小项集容量。我们在正被挖掘的较大数据集中寻找频繁数据集。当确定使用 arulesNBMiner 时,您应该看到一些迹象:项目集频率正出现在数据子集合中。

> library(rJava)
> library(arulesNBMiner)
Warning message:
程辑包‘arulesNBMiner’是用R版本3.6.3 来建造的 
> data(Agrawal)
> summary(Agrawal.db)
transactions as itemMatrix in sparse format with
 20000 rows (elements/itemsets/transactions) and
 1000 columns (items) and a density of 0.0099933 

most frequent items:
item446 item938 item818 item457 item401 (Other) 
   1638    1514    1450    1397    1389  192478 

element (itemset/transaction) length distribution:
sizes
   1    2    3    4    5    6    7    8    9   10   11   12   13   14   15 
  16   68  215  427  763 1234 1813 2215 2341 2437 2320 1896 1457 1045  739 
  16   17   18   19   20   21   22   23   24 
 447  260  171   74   25   16   15    2    4 

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
  1.000   8.000  10.000   9.993  12.000  24.000 

includes extended item information - examples:
  labels
1  item1
2  item2
3  item3

includes extended transaction information - examples:
  transactionID
1        trans1
2        trans2
3        trans3
> summary(Agrawal.pat)
set of 2000 itemsets

most frequent items:
item938 item446 item457 item615 item594 (Other) 
     38      37      34      29      28    3844 

element (itemset/transaction) length distribution:sizes
  1   2   3   4   5   6 
721 759 353 132  26   9 

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
  1.000   1.000   2.000   2.005   3.000   6.000 

summary of quality measures:
    pWeights           pCorrupts     
 Min.   :8.742e-07   Min.   :0.0000  
 1st Qu.:1.476e-04   1st Qu.:0.2748  
 Median :3.392e-04   Median :0.4881  
 Mean   :5.000e-04   Mean   :0.4920  
 3rd Qu.:6.899e-04   3rd Qu.:0.7085  
 Max.   :3.150e-03   Max.   :1.0000  

includes transaction ID lists: FALSE 

1,为频繁集挖掘 Agrawal 数据

> mynbparameters <- NBMinerParameters(Agrawal.db)
> mynbminer <- NBMiner(Agrawal.db, parameter=mynbparameters)
> summary(mynbminer)
set of 3462 itemsets

most frequent items:
item594 item446 item818 item938 item208 (Other) 
     58      54      53      53      52    7138 

element (itemset/transaction) length distribution:sizes
   1    2    3    4    5 
1000 1364  772  266   60 

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
   1.00    1.00    2.00    2.14    3.00    5.00 

summary of quality measures:
   precision     
 Min.   :0.9901  
 1st Qu.:1.0000  
 Median :1.0000  
 Mean   :0.9997  
 3rd Qu.:1.0000  
 Max.   :1.0000  

includes transaction ID lists: FALSE 

以下是对之前输出数据的研究所得:
项目近乎均匀分布。
项集长度 1 或 2 有较大偏斜。

Apriori
Apriori 是可以帮助了解关联规则的分类算法。与事务的实施方式相对。这种算法尝试找到数据集中常见的子集合,必须满足最小阈值以便核实关联。 Apriori 方法会从您的数据集中返回有趣的关联,如当出现 Y 时,会返回 X。支持度是包含 X 和 Y 的事务的百分比。置信度是同时包含 X 和 Y 的事务的百分比。支持度的默认值为 10,置信度的默认值为 80。

1,评估购物篮中的关联

> library(Matrix)
> library(arules)
> tr <- read.transactions("http://labfile.oss.aliyuncs.com/courses/887/retail.dat", format="basket")
> summary(tr)
transactions as itemMatrix in sparse format with
 88162 rows (elements/itemsets/transactions) and
 16470 columns (items) and a density of 0.0006257289 

most frequent items:
     39      48      38      32      41 (Other) 
  50675   42135   15596   15167   14945  770058 

element (itemset/transaction) length distribution:
sizes
   1    2    3    4    5    6    7    8    9   10   11   12   13   14 
3016 5516 6919 7210 6814 6163 5746 5143 4660 4086 3751 3285 2866 2620 
  15   16   17   18   19   20   21   22   23   24   25   26   27   28 
2310 2115 1874 1645 1469 1290 1205  981  887  819  684  586  582  472 
  29   30   31   32   33   34   35   36   37   38   39   40   41   42 
 480  355  310  303  272  234  194  136  153  123  115  112   76   66 
  43   44   45   46   47   48   49   50   51   52   53   54   55   56 
  71   60   50   44   37   37   33   22   24   21   21   10   11   10 
  57   58   59   60   61   62   63   64   65   66   67   68   71   73 
   9   11    4    9    7    4    5    2    2    5    3    3    1    1 
  74   76 
   1    1 

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
   1.00    4.00    8.00   10.31   14.00   76.00 

includes extended item information - examples:
  labels
1      0
2      1
3     10

以下是对之前输出数据的研究所得: 共 88162 个购物篮,对应 16470 个项目。 成对项目很受欢迎(项目 39 有 50675 个)

看一下最频繁的项目:

> itemFrequencyPlot(tr, support=0.1)
image.png

为合适的关联构建一些规则:

> rules <- apriori(tr, parameter=list(supp=0.5, conf=0.5))
Apriori

Parameter specification:
 confidence minval smax arem  aval originalSupport maxtime support minlen
        0.5    0.1    1 none FALSE            TRUE       5     0.5      1
 maxlen target  ext
     10  rules TRUE

Algorithmic control:
 filter tree heap memopt load sort verbose
    0.1 TRUE TRUE  FALSE TRUE    2    TRUE

Absolute minimum support count: 44081 

set item appearances ...[0 item(s)] done [0.00s].
set transactions ...[16470 item(s), 88162 transaction(s)] done [0.47s].
sorting and recoding items ... [1 item(s)] done [0.00s].
creating transaction tree ... done [0.01s].
checking subsets of size 1 done [0.00s].
writing ... [1 rule(s)] done [0.00s].
creating S4 object  ... done [0.01s].
> summary(rules)
set of 1 rules

rule length distribution (lhs + rhs):sizes
1 
1 

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
      1       1       1       1       1       1 

summary of quality measures:
    support         confidence        coverage      lift  
 Min.   :0.5748   Min.   :0.5748   Min.   :1   Min.   :1  
 1st Qu.:0.5748   1st Qu.:0.5748   1st Qu.:1   1st Qu.:1  
 Median :0.5748   Median :0.5748   Median :1   Median :1  
 Mean   :0.5748   Mean   :0.5748   Mean   :1   Mean   :1  
 3rd Qu.:0.5748   3rd Qu.:0.5748   3rd Qu.:1   3rd Qu.:1  
 Max.   :0.5748   Max.   :0.5748   Max.   :1   Max.   :1  
     count      
 Min.   :50675  
 1st Qu.:50675  
 Median :50675  
 Mean   :50675  
 3rd Qu.:50675  
 Max.   :50675  

mining info:
 data ntransactions support confidence
   tr         88162     0.5        0.5

规则的支持度有力,置信度较低。

具体规则:

> inspect(rules)
    lhs    rhs  support   confidence coverage lift count
[1] {}  => {39} 0.5747941 0.5747941  1        1    50675

正如我们猜想的那样,大多数人将项目 39 放入购物篮

寻找更多与规则相关的信息

> interestMeasure(rules, c("support", "chiSquare", "confidence", "conviction", "cosine", "leverage", "lift", "oddsRatio"), tr)
    support chiSquared confidence conviction    cosine leverage lift oddsRatio
1 0.5747941         NA  0.5747941          1 0.7581518        0    1        NA

用 TraMineR 确定序列
TraMineR 功能包用于挖掘序列,并将其可视化,其思想是发现序列。可以将序列分布、序列频率及湍流等绘图的图解设备构建到功能包中。此外,还有一些自然出现的项目,其中的数据有重复的序列,如在一些社会科学场地,数据会自然地循环项目。 通过此文件,我将带您大概了解 TraMineR,以便生成一系列用于发现序列的工具。在挖掘操作中选择何种工具取决于您自己。

1,确定训练和职业中的序列
在这一示例中,我们将看到人们生活中从训练到工作的进程中时间的序列。我们期望看到从失业未经训练的状态至经过训练并最终成为全职员工的进程。

> library(TraMineR)

TraMineR stable version 2.2-0.1 (Built: 2020-09-07)
Website: http://traminer.unige.ch
Please type 'citation("TraMineR")' for citation information.

Warning message:
程辑包‘TraMineR’是用R版本3.6.3 来建造的 
> data(mvad)
> summary(mvad)
       id            weight        male     catholic  Belfast   N.Eastern
 Min.   :  1.0   Min.   :0.1300   no :342   no :368   no :624   no :503  
 1st Qu.:178.8   1st Qu.:0.4500   yes:370   yes:344   yes: 88   yes:209  
 Median :356.5   Median :0.6900                                          
 Mean   :356.5   Mean   :0.9994                                          
 3rd Qu.:534.2   3rd Qu.:1.0700                                          
 Max.   :712.0   Max.   :4.4600                                          
 Southern  S.Eastern Western   Grammar   funemp    gcse5eq    fmpr     livboth  
 no :497   no :629   no :595   no :583   no :595   no :452   no :537   no :261  
 yes:215   yes: 83   yes:117   yes:129   yes:117   yes:260   yes:175   yes:451  
                                                                                
                                                                                
                                                                                
                                                                                
         Jul.93            Aug.93            Sep.93            Oct.93   
 school     :135   school     :135   school     :179   school     :175  
 FE         : 97   FE         : 98   FE         :275   FE         :276  
 employment :173   employment :178   employment : 83   employment : 88  
 training   :122   training   :127   training   :158   training   :158  
 joblessness:185   joblessness:174   joblessness: 17   joblessness: 15  
 HE         :  0   HE         :  0   HE         :  0   HE         :  0  
         Nov.93            Dec.93            Jan.94            Feb.94   
 school     :174   school     :172   school     :171   school     :172  
 FE         :272   FE         :271   FE         :263   FE         :259  
 employment : 95   employment : 98   employment :100   employment :100  
 training   :157   training   :156   training   :158   training   :154  
 joblessness: 14   joblessness: 15   joblessness: 20   joblessness: 27  
 HE         :  0   HE         :  0   HE         :  0   HE         :  0  
         Mar.94            Apr.94            May.94            Jun.94   
 school     :171   school     :171   school     :170   school     :165  
 FE         :257   FE         :251   FE         :247   FE         :232  
 employment :106   employment :112   employment :117   employment :130  
 training   :154   training   :153   training   :150   training   :151  
 joblessness: 24   joblessness: 25   joblessness: 28   joblessness: 34  
 HE         :  0   HE         :  0   HE         :  0   HE         :  0  
         Jul.94            Aug.94            Sep.94            Oct.94   
 school     :140   school     :139   school     :143   school     :144  
 FE         :196   FE         :196   FE         :221   FE         :222  
 employment :178   employment :184   employment :167   employment :172  
 training   :142   training   :144   training   :146   training   :137  
 joblessness: 56   joblessness: 49   joblessness: 35   joblessness: 37  
 HE         :  0   HE         :  0   HE         :  0   HE         :  0  
         Nov.94            Dec.94            Jan.95            Feb.95   
 school     :144   school     :143   school     :144   school     :143  
 FE         :220   FE         :219   FE         :218   FE         :211  
 employment :176   employment :181   employment :182   employment :185  
 training   :137   training   :133   training   :128   training   :127  
 joblessness: 35   joblessness: 36   joblessness: 40   joblessness: 46  
 HE         :  0   HE         :  0   HE         :  0   HE         :  0  
         Mar.95            Apr.95            May.95            Jun.95   
 school     :143   school     :142   school     :142   school     :139  
 FE         :210   FE         :203   FE         :200   FE         :189  
 employment :190   employment :199   employment :205   employment :215  
 training   :124   training   :120   training   :118   training   :112  
 joblessness: 45   joblessness: 48   joblessness: 47   joblessness: 57  
 HE         :  0   HE         :  0   HE         :  0   HE         :  0  
         Jul.95            Aug.95            Sep.95            Oct.95   
 school     :149   school     :149   school     : 58   school     : 30  
 FE         :140   FE         :138   FE         :152   FE         :137  
 employment :269   employment :273   employment :305   employment :294  
 training   : 93   training   : 88   training   : 84   training   : 81  
 joblessness: 58   joblessness: 61   joblessness: 61   joblessness: 57  
 HE         :  3   HE         :  3   HE         : 52   HE         :113  
         Nov.95            Dec.95            Jan.96            Feb.96   
 school     : 29   school     : 29   school     : 27   school     : 27  
 FE         :136   FE         :135   FE         :132   FE         :132  
 employment :296   employment :296   employment :301   employment :300  
 training   : 79   training   : 80   training   : 81   training   : 80  
 joblessness: 56   joblessness: 56   joblessness: 57   joblessness: 60  
 HE         :116   HE         :116   HE         :114   HE         :113  
         Mar.96            Apr.96            May.96            Jun.96   
 school     : 27   school     : 27   school     : 27   school     : 27  
 FE         :125   FE         :125   FE         :124   FE         :122  
 employment :308   employment :313   employment :315   employment :324  
 training   : 78   training   : 78   training   : 78   training   : 74  
 joblessness: 61   joblessness: 56   joblessness: 55   joblessness: 53  
 HE         :113   HE         :113   HE         :113   HE         :112  
         Jul.96            Aug.96            Sep.96            Oct.96   
 school     : 18   school     : 17   school     :  8   school     :  0  
 FE         : 83   FE         : 83   FE         : 82   FE         : 79  
 employment :388   employment :392   employment :387   employment :379  
 training   : 58   training   : 55   training   : 51   training   : 51  
 joblessness: 58   joblessness: 59   joblessness: 59   joblessness: 56  
 HE         :107   HE         :106   HE         :125   HE         :147  
         Nov.96            Dec.96            Jan.97            Feb.97   
 school     :  0   school     :  0   school     :  0   school     :  0  
 FE         : 80   FE         : 80   FE         : 79   FE         : 79  
 employment :378   employment :380   employment :382   employment :385  
 training   : 50   training   : 49   training   : 46   training   : 43  
 joblessness: 56   joblessness: 56   joblessness: 59   joblessness: 59  
 HE         :148   HE         :147   HE         :146   HE         :146  
         Mar.97            Apr.97            May.97            Jun.97   
 school     :  0   school     :  0   school     :  0   school     :  0  
 FE         : 76   FE         : 75   FE         : 74   FE         : 72  
 employment :386   employment :392   employment :394   employment :400  
 training   : 42   training   : 40   training   : 38   training   : 37  
 joblessness: 61   joblessness: 60   joblessness: 61   joblessness: 60  
 HE         :147   HE         :145   HE         :145   HE         :143  
         Jul.97            Aug.97            Sep.97            Oct.97   
 school     :  0   school     :  0   school     :  0   school     :  0  
 FE         : 44   FE         : 44   FE         : 37   FE         : 29  
 employment :429   employment :431   employment :435   employment :434  
 training   : 26   training   : 22   training   : 24   training   : 23  
 joblessness: 78   joblessness: 80   joblessness: 75   joblessness: 73  
 HE         :135   HE         :135   HE         :141   HE         :153  
         Nov.97            Dec.97            Jan.98            Feb.98   
 school     :  0   school     :  0   school     :  0   school     :  0  
 FE         : 29   FE         : 29   FE         : 27   FE         : 26  
 employment :441   employment :443   employment :443   employment :444  
 training   : 22   training   : 22   training   : 21   training   : 17  
 joblessness: 67   joblessness: 66   joblessness: 70   joblessness: 74  
 HE         :153   HE         :152   HE         :151   HE         :151  
         Mar.98            Apr.98            May.98            Jun.98   
 school     :  0   school     :  0   school     :  0   school     :  0  
 FE         : 26   FE         : 26   FE         : 25   FE         : 25  
 employment :447   employment :449   employment :450   employment :454  
 training   : 17   training   : 17   training   : 16   training   : 15  
 joblessness: 72   joblessness: 71   joblessness: 72   joblessness: 71  
 HE         :150   HE         :149   HE         :149   HE         :147  
         Jul.98            Aug.98            Sep.98            Oct.98   
 school     :  0   school     :  0   school     :  0   school     :  0  
 FE         : 14   FE         : 14   FE         : 14   FE         :  9  
 employment :477   employment :482   employment :479   employment :482  
 training   : 11   training   : 11   training   : 13   training   : 13  
 joblessness: 81   joblessness: 80   joblessness: 85   joblessness: 82  
 HE         :129   HE         :125   HE         :121   HE         :126  
         Nov.98            Dec.98            Jan.99            Feb.99   
 school     :  0   school     :  0   school     :  0   school     :  0  
 FE         :  8   FE         :  8   FE         :  9   FE         :  9  
 employment :484   employment :481   employment :484   employment :485  
 training   : 12   training   : 13   training   : 13   training   : 10  
 joblessness: 83   joblessness: 85   joblessness: 82   joblessness: 85  
 HE         :125   HE         :125   HE         :124   HE         :123  
         Mar.99            Apr.99            May.99            Jun.99   
 school     :  0   school     :  0   school     :  0   school     :  0  
 FE         :  9   FE         :  9   FE         :  9   FE         :  9  
 employment :483   employment :483   employment :482   employment :484  
 training   :  9   training   :  9   training   :  8   training   :  8  
 joblessness: 88   joblessness: 89   joblessness: 93   joblessness: 93  
 HE         :123   HE         :122   HE         :120   HE         :118 

我们可以查看标准标识符来了解体重、性别、宗教等信息。 截取序列数据(我们正通过 86 使用 17 列,因为这适用于人们在数据调查不同点的状态),并将数据的这部分应用于序列确定函数。

> myseq <- seqdef(mvad, 17:86)
 [>] 6 distinct states appear in the data: 
     1 = employment
     2 = FE
     3 = HE
     4 = joblessness
     5 = school
     6 = training
 [>] state coding:
       [alphabet]  [label]     [long label] 
     1  employment  employment  employment
     2  FE          FE          FE
     3  HE          HE          HE
     4  joblessness joblessness joblessness
     5  school      school      school
     6  training    training    training
 [>] 712 sequences in the data set
 [>] min/max sequence length: 70/70

这样看来是正确的,我们可以参照相关状态(失业、上学、训练及工作)来获取所需的行序列数据。

> seqiplot(myseq)
image.png

通过参照个人不同状态间界定的转换期,您会发现连续几个月都有训练。您应进行核实,以便数据显示的信息与您对序列数据的理解相一致。

> seqfplot(myseq)
image.png

现在我们来看序列在不同时间的频率。多次观看后我们会看到同一序列的人群集,如经过一段时间的训练后会有工作。

> seqdplot(myseq)
image.png

我们来看看序列状态在不同时期的分布情况。通常情况下,人们在上学或训练后开始工作。

> seqHtplot(myseq)
image.png

熵在不同时期的变化特点:明显降低后会出现细微的上升。这与不同人群会在最初做出不同选择的情况一致(很多状态),如上学或训练,然后进行工作,成为劳动力(一种状态)。 有一个有趣的想法为数据湍流。湍流传达出一个信息,即从数据中可见的某个特定事例可以推导出多少不同的后续序列。

> myturbulence <- seqST(myseq)
> hist(myturbulence)
image.png

我们可以看到带有长尾数的近乎标准化分布。大多数状态分为少量后续状态以及少数状态或多或少的异常值。

序列相似点
最长公共前缀(LCP):我们可以通过比较相同的最长序列前缀来确定相似点。
最长公共序列(LCS):我们也可以通过查看两个序列之间的相同部分,根据其内部的最长序列来确定相似点。
最佳匹配(OM)距离:指生成一个不同序列的最佳编辑距离,在此距离下,插入及删除的成本最小。

界定可用的序列对象

> data(famform)
> seq <- seqdef(famform)
 [>] found missing values ('NA') in sequence data
 [>] preparing 5 sequences
 [>] coding void elements with '%' and missing values with '*'
 [>] 5 distinct states appear in the data: 
     1 = M
     2 = MC
     3 = S
     4 = SC
     5 = U
 [>] state coding:
       [alphabet]  [label]  [long label] 
     1  M           M        M
     2  MC          MC       MC
     3  S           S        S
     4  SC          SC       SC
     5  U           U        U
 [>] 5 sequences in the data set
 [>] min/max sequence length: 2/5
> seq
    Sequence   
[1] S-U        
[2] S-U-M      
[3] S-U-M-MC   
[4] S-U-M-MC-SC
[5] U-M-MC     

确定使用序列 3 和序列 4 的 LCP,可以直接计算 LCS 度量:

> seqLLCP(seq[3,], seq[4,])
[1] 4
> seqLLCS(seq[1,], seq[2,])
[1] 2
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,717评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,501评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,311评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,417评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,500评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,538评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,557评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,310评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,759评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,065评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,233评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,909评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,548评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,172评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,420评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,103评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,098评论 2 352