conda安装tensorflow

首先强烈建议大家用conda 管理python包,这里简单说下ubuntu 下conda的安装方法:

到这个网站上下载你想要的conda 版本,根据你自己环境下载。因为我是在ubuntu上安装的,我选择的Miniconda2-latest-Linux-x86_64.sh文件

然后一条命令搞定:sh Miniconda2-latest-Linux-x86_64.sh

这样就安装完成了。

python -c "import torch; print(torch.version.cuda)"

export CUDA_HOME=/home/feng/.local/conda/

加个国内的镜像源,直接上命令:

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/

conda update -n base -c defaults conda

conda config --set auto_activate_base false

conda TensorFlow 包使用面向深度神经网络的英特尔数学核心函数库(Intel MKL-DNN),我们从 TensorFlow 1.9.0 版本开始。该库带来了巨大的性能提升,详见下图:

图源:https://www.anaconda.com/blog/developer-blog/tensorflow-in-anaconda/

如上所示,与pip 安装相比,conda 安装可以带来超过 8 倍的速度提升。这对于经常使用 CPU

进行训练和推断的人来说非常棒!作为一名机器学习工程师,我在将代码 push 到 GPU 机器上之前,先使用 CPU

对代码运行测试训练。conda 安装带来的速度提升可以帮助快速迭代。我还在 CPU 上进行大量推断,因此这有助于我的模型性能。

MKL 库不仅加速 TensorFlow 包,还能加速其他广泛使用的库,如 NumPy、NumpyExr、SciPy 和 Scikit-Learn。

下面是使用 conda 安装所需的步骤。

pip uninstall tensorflow

安装好 conda 之后,尝试以下命令:

conda install tensorflow

In case your anaconda channel is not the highest priority channel by default(or you are not sure), use the following command to make sure you

get the right TensorFlow with Intel optimizations

conda install -c anaconda tensorflow

conda install -c conda-forge ase

TensorFlowConda 安装详细参见:https://www.anaconda.com/blog/developer-blog/tensorflow-in-anaconda/

MKL 优化方面的详情参见:https://docs.anaconda.com/mkl-optimizations/。

GPU 版本的安装也更加简单

conda 安装将自动安装 GPU 支持所需的 CUDA 和 CuDNN 库。pip 安装则需要手动安装这些库。人人喜欢一步到位,尤其是在下载与安装库这方面。

使用 pip 安装 TensorFlow 时,GPU 支持所需的 CUDA 和 CuDNN 库必须单独手动安装,增加了大量负担。而使用 conda 安装 GPU 加速版本的 TensorFlow 时,只需使用命令 conda install tensorflow-gpu,这些库就会自动安装成功,且版本与 tensorflow-gpu 包兼容。此外,conda 安装这些库的位置不会与通过其他方法安装的库的其他实例产生冲突。不管使用 pip 还是 conda 安装 GPU 支持的 TensorFlow,NVIDIA 驱动程序都必须单独安装。

nvidia drive install

## 2.卸载驱动

sudo apt-get --purge remove nvidia*

sudo apt autoremove

To remove CUDA Toolkit:

$sudo apt-get --purge remove "*cublas*" "cuda*"

To remove NVIDIA Drivers:

$sudo apt-get --purge remove "*nvidia*"

sudo apt-get --purge remove nvidia*

sudo apt install nvidia-cuda-toolkit

sudo apt install nvidia-smi

ctrl+alt+F4 logo in tty4

sudo  service lightdm stop

sudo ./Nvidia-version.sh

sudo dpkg --force all --remove   强制删除某个软件

sudo dpkg --configure -a

dpkg -l | grep ^ii | awk '{print $2}' | grep -v XXX | xargs sudo aptitude reinstall

sudo reboot

对于 TensorFlow 的多个版本,conda 包可使用多种 CUDA 版本。例如,对于 TensorFlow 1.10.0 版本,conda 包支持可用的 CUDA 8.0、9.0 和 9.2 库。而 pip 包仅支持 CUDA 9.0 库。在不支持 CUDA 库最新版本的系统上运行时,这非常重要。最后,由于这些库是通过 conda 自动安装的,用户可轻松创建多个环境,并对比不同 CUDA 版本的性能。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,080评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,422评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,630评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,554评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,662评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,856评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,014评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,752评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,212评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,541评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,687评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,347评论 4 331
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,973评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,777评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,006评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,406评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,576评论 2 349

推荐阅读更多精彩内容