Diffbind差异片段分析

搞笑瞬间1:warning警告解决不了

搞笑瞬间2:就一个差异片段

我怀疑是样本的FRIP值太低了造成的

代码记录
library(DiffBind)
library(stats)

-------------构建包含bam文件和callpeak文件的数据框---------------

SampleID <- c(paste("Aging",1:3,sep = ""),paste("Young",1:3,sep = ""))
Tissue <- rep(c("Aging","Young"),c(3,3))
Factor <- rep("ATAC",times = 6)
Condition <- rep("same",times = 6)
Treatment <- rep("full-media",times = 6)
Replicate <- rep(1:3,length = 6)
PeakCaller <- rep("bed",times = 6)
bam_file_path <- "C:/文件夹数据重要一万分丢了就死人了/生信学习/otherdata/MLZ/callpeak"
bamReads <- c(paste(bam_file_path,"Aging1.last.bam",sep = "/"),
paste(bam_file_path,"Aging2.last.bam",sep = "/"),
paste(bam_file_path,"Aging3.last.bam",sep = "/"),
paste(bam_file_path,"Young1.last.bam",sep = "/"),
paste(bam_file_path,"Young2.last.bam",sep = "/"),
paste(bam_file_path,"Young3.last.bam",sep = "/"))
peak_file_path <- "C:/文件夹数据重要一万分丢了就死人了/生信学习/otherdata/MLZ/callpeak"
Peaks <- c(paste(peak_file_path,"Aging1_peaks.narrowPeak",sep = "/"),
paste(peak_file_path,"Aging2_peaks.narrowPeak",sep = "/"),
paste(peak_file_path,"Aging3_peaks.narrowPeak",sep = "/"),
paste(peak_file_path,"Young1_peaks.narrowPeak",sep = "/"),
paste(peak_file_path,"Young2_peaks.narrowPeak",sep = "/"),
paste(peak_file_path,"Young3_peaks.narrowPeak",sep = "/"))
samples <- data.frame(SampleID,Tissue,Factor,Condition,Treatment,Replicate,bamReads,Peaks,PeakCaller)

-----------------读取数据---------------------

ATAC <- dba(sampleSheet = samples,minOverlap = 2)

minoverlap表示该参数值为正整数n

表示将那些至少在n个样本中出现的peak纳入分析,其它peak舍弃

命令说明

1. 该命令将metadata中的所有样本信息一次性读入,并构建一个DBA对象

2. DBA对象可以理解为DiffBind用来存储信息的特定格式,本质上是一个S3类的列表,可以使用"$"符访问其中元素

3. 该DBA对象中存储大量信息,包括metadata中直接给出的,还有通过整合metadta得到的新的信息,其中重要的有"masks",在此例中,访问方式为h3k27ac$masks

4. 该命令在读入各样本peak之后,会根据minOverlap参数,去掉不符合条件的peak之后,再对所有剩余peak进行merge,有重叠的会被merge到一起形成新的peak,merge之后形成一个一致性peak(consensus peaksets)

5. 直接输入变量名可以查看该DBA对象的基本信息,要想查看该对象中所以信息,使用str(h3k27ac)

查看该DBA对象的基本信息

ATAC

6 Samples, 33984 sites in matrix (75392 total):

ID Tissue Factor Condition Treatment Replicate Intervals

1 Aging_1 Aging ATAC same full-media 1 18818

基本信息说明

1. 该信息中将peak文件和bam文件的位置隐去了,元数据中的其它信息都会展示在这里

2. 数据中添加了每个peak文件中的peak数目

3. 首行信息所表示的意思是:共读取了6个样本,将至少出现在三个样本中的所有peak进行merge之后共产生33984个peak,而在不筛选的情况下,所有peak在merge之后形成75392个peak

4. 虽然输入ATAC之后只显示了很少的信息,但实际上该数据中包含非常多的信息,使用str(ATAC)就可以查看所有信息

--------------------Occupancy analysis-------------------------------------

pdf("occupancy_plot.pdf")
plot(ATAC)
dev.off()

该热图所表示的样本之间的相关性是根据各样本的peak位置进行计算的

计算相关性时所用的peak,是根据dba函数中minOverlap参数读取并进行了merge之后的一致性peak

------------------Counting reads--------------------------------------------

ATAC <- dba.count(ATAC,minOverlap = 2)

这里的参数minOverlap的值,与dba中该参数的值可以不同,既可以比之前大,也可以比之前小。

查看基本信息

ATAC

6 Samples, 33869 sites in matrix:

ID Tissue Factor Replicate Caller Intervals FRiP

Aging_1 Aging ATAC same full-media 1 2615279 0.07

基本信息说明

1. 该信息与之前数据读取之后的结果十分相似,差别仅是多了一列内容

2. 最后一列表示在peak区域的reads在占所有bam文件中所有reads的比例,当然越高越高,表示背景越低

--------------根据reads count结果计算样本相关性并绘图--------------------------

pdf("affinity_plot.pdf")
plot(ATAC)
dev.off()

该热图所表示的样本之间的相关性是根据各样本在一致性peak上的信号强度(reads count数)计算的

------------------------------创建分组-----------------------------------

ATAC <- dba.contrast(ATAC,categories = DBA_TISSUE)
ATAC

Design: [~Tissue] | 1 Contrast:

Factor Group Samples Group2 Samples2

1 Tissue Young 3 Aging 3

多个分组信息

-------------------------------差异peak分析----------------------------------

ATAC <- dba.analyze(ATAC,method = DBA_ALL_METHODS)

默认情况是基于DEseq2, 可以设置参数method=DBA_EDGER选择edgeR,或者设置method=DBA_ALL_METHODS。每种方法都会评估差异结果的p-vaue和FDR。

用于差异分析的peak,来自于dba.count函数中进行了reads count计数的一致性peak

pdf(file="overlap_DESeq2_edgeR.pdf",width = 7,height = 7)
dba.plotVenn(ATAC,contrast=1,method=DBA_ALL_METHODS)
dev.off()
ATAC

6 Samples, 33096 sites in matrix:

Design: [~Tissue] | 1 Contrast:

Factor Group Samples Group2 Samples2 DB.edgeR DB.DESeq2

1 Tissue Young 3 Aging 3 200 1

找到的差异peak共有1个????但是DB。edgeR有200

默认情况下,peak具有显著差异的标准是 FDR<=0.05

comp1.edgeR <- dba.report(ATAC, method=DBA_EDGER, contrast = 1, th=1)
out <- as.data.frame(comp1.edgeR)
write.table(out, file="results_edgeR.txt", sep="\t", quote=F, col.names = NA)

edge.bed <- out[ which(out$FDR < 0.05),
c("seqnames", "start", "end", "strand", "Fold")]
write.table(edge.bed, file="results_edgeR_sig.bed", sep="\t", quote=F, row.names=F, col.names=F)

---------------根据差异peak绘图---------------------------

pdf("diff_plot.pdf")
plot(ATAC, contrast = 1)
dev.off()

------------结果报告和绘图------------------------------------

ATAC.DB <- dba.report(ATAC)
ATAC.DB.DF <- as.data.frame(ATAC.DB)
write.table(ATAC.DB.DF,file = "diff_peaks.txt",
quote = F,sep = "\t",
row.names = F,col.names = T)
pdf("volcano_plot.pdf")
dba.plotVolcano(ATAC)
dev.off()

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,122评论 6 505
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,070评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,491评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,636评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,676评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,541评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,292评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,211评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,655评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,846评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,965评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,684评论 5 347
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,295评论 3 329
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,894评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,012评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,126评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,914评论 2 355

推荐阅读更多精彩内容