视频原理一视频、图像的基本概念

从今天开始,会分享一些视频和图像相关的技术,主要包括视频图像的基本概念,图像的缩放处理,视频压缩编码、视频打包传输和音视频相关同步等相关知识

像素

像素是图像的基本单元,一个个像素就组成了图像,你可以认为像素就是图像中的一个点,那么一张图像中有多少个像素呢,那么接下来就引申出了另外一个非常重要的概念-分辨率

分辨率

图像的分辨率是指图像的尺寸或大小,我们一般用像素个数来表示图像的尺寸,比如说一张 1920x1080 的图像,前者 1920 指的是该图像的宽度方向上有 1920 个像素点,而后者 1080 指的是图像的高度方向上有 1080 个像素点。

视频行业常见的分辨率有 QCIF(176x144)、CIF(352x288)、D1(704x576 或 720x576),还有我们比较熟悉的 360P(640x360)、720P(1280x720)、1080P(1920x1080)、4K(3840x2160)、8K(7680x4320)等。

首先像素就只是一个带有颜色的小块。

其次 图像的分辨率越高,图像就越清晰


准确的来说,第二句话不是那么准确,因为对于原始图像,确实是分辨率越高,图像越清晰,但是我们通常看到的图片一般是经过后期处理的,比如放大缩小,或者磨皮美颜。经过处理过后的图像,尤其是放大之后的图像,分辨率很高,但是它并没有很清晰


这是因为放大的图像是通过“插值”处理得到的,而插值的像素是使用邻近像素经过插值算法计算得到的,跟实际相机拍摄的像素是不一样的,相当于“脑补”出来的像素值。因此,放大的图像还是会存在偏差,表现出来就是会模糊。我们会在之后的课程中来具体聊聊这个过程是怎么做的。总之,我们不能简单地认为分辨率数值越高的图像就越清晰


刚才我们在前面还提到,像素就是一个带有颜色的小块,那这个小块到底是怎么组成的呢?接下来就说说RGB 图像像素和位深的概念。


位深

一般来说,我们看到的彩色图像中,都有三个通道,这三个通道就是 R、G、B 通道。简单来说就是,彩色图像中的像素是有三个颜色值的,分别是红、绿、蓝三个值。也就是说我们看到的那个带有颜色的块其实是由 R、G、B 三个值组成的(有的时候还会有 Alpha 值,代表透明度,我们这里不展开讨论)。

通常 R、G、B 各占 8 个位,也就是一个字节。8 个位能表示 256 种颜色值,那 3 个通道的话就是 256 的 3 次方个颜色值,总共是 1677 万种颜色。我们称这种图像是 8bit 图像,而这个 8bit 就是位深。我们可以看到,位深越大,我们能够表示的颜色值就越多。因此,图像就可以更精确地展示你拍摄的真实世界。

比如现在有 10bit 图像和 12bit 图像,8bit 图像的每一个像素需要占用 3x8 总共 24 个位,3 个字节,同理 10bit、12bit 就会占用更多。所以,图像的位深越大,需要的存储空间就会越大,传输这张图像使用的流量就会越多。目前我们大多数情况下看到的图像以及视频还是 8bit 位深的。


Stride

接下来我们来看一个特别的概念——Stride。这个 Stride 不是图像本身的属性,但是视频开发者经常会碰到,也是经常会出问题的一个东西。我们团队在工作中就多次遇到过由于客户没有处理好这个东西,从而导致播放的图像出现“花屏”的情况。

Stride 也可以称之为跨距,是图像存储的时候有的一个概念。它指的是图像存储时内存中每行像素所占用的空间。你可能会问,一张图像的分辨率确定了,那一行的像素值不就确定了吗?为什么还需要跨距这个东西呢?其实,为了能够快速读取一行像素,我们一般会对内存中的图像实现内存对齐,比如 16 字节对齐。举个例子,我们现在有一张 RGB 图像,分辨率是 1278x720。

我们将它存储在内存当中,一行像素需要 1278x3=3834 个字节,3834 除以 16 无法整除。因此,没有 16 字节对齐。所以如果需要对齐的话,我们需要在 3834 个字节后面填充 6 个字节,也就是 3840 个字节做 16 字节对齐,这样这幅图像的 Stride 就是 3840 了。如下图所示:


以上就是图像的基本概念,接下来我们来讲讲视频的一些基本概念。前面我们说到,视频是由一系列图像组成的,即“连续”的一帧帧图像就可以组成视频。

但事实上,视频中的图像并不是真正意义上的连续。也就是说,在 1 秒钟之内,图像的数量是有限的。只是当数量达到一定值之后,人的眼睛的灵敏度就察觉不出来了,看起来就是连续的视频了。这个 1 秒钟内图像的数量就是帧率。据研究表明,一般帧率达到 10~12 帧每秒,人眼就会认为是流畅的了。当然,可能会有个体差异。

通常,我们在电影院看的电影帧率一般是 24fps(帧每秒),监控行业常用 25fps,而我们声网常用的帧率有 15fps、24fps 和 30fps。你可以根据自己的使用场景来具体设定你想使用的帧率值。选择帧率的时候还需要考虑设备处理性能的问题,尤其是实时视频通话场景。帧率高,代表着每秒钟处理的图像数量会很高,从而需要的设备性能就比较高。

如果是含有多个图像处理过程,比如人脸识别、美颜等算法的时候,就更需要考虑帧率大小和设备性能的问题。同样,也要考虑带宽流量的问题。帧率越大,流量也会越多,对带宽的要求也会越高。

码率

我们已经知道,视频的帧率越高,1 秒钟内的图像数据量就会越大。通常我们存储视频的时候需要对图像进行压缩之后再存储,否则视频会非常大。

那么压缩之后的视频一般如何描述它的大小呢?一般对于一个视频文件,我们直接看视频的大小就可以了。但是在实时通信或者直播的时候,视频是视频流的形式,我们怎么衡量呢?这就涉及到我接下来要介绍的概念——码率。

码率是指视频在单位时间内的数据量的大小,一般是 1 秒钟内的数据量,其单位一般是 Kb/s 或者 Mb/s。通常,我们用压缩工具压缩同一个原始视频的时候,码率越高,图像的失真就会越小,视频画面就会越清晰。但同时,码率越高,存储时占用的内存空间就会越大,传输时使用的流量就会越多。

那么同一个原始视频被压缩之后,真的是码率越高,清晰度就越高吗?其实准确来说的话,不是。因为视频的压缩是一个非常复杂的过程,事实上,视频压缩之后的清晰度还跟压缩时选用的压缩算法,以及压缩时使用的压缩速度有关。压缩算法越先进,压缩率就会越高,码率自然就会越小。压缩速度越慢,压缩的时候压缩算法就会越精细,最后压缩率也会有提高,相同的清晰度码率也会更小。所以,并不是码率越高,清晰度就会越高。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,277评论 6 503
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,689评论 3 393
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,624评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,356评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,402评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,292评论 1 301
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,135评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,992评论 0 275
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,429评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,636评论 3 334
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,785评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,492评论 5 345
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,092评论 3 328
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,723评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,858评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,891评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,713评论 2 354

推荐阅读更多精彩内容