推荐系统的下一步?阿里时空聚合GNN,效果吊打LightGCN!

大家好,我是对白。

不得不说,GNN自问世后,在众多领域遭遇魔改,所幸效果是越来越好。想起前几天看到的一篇论文(STAM-GNN)将时序信息加进了GNN中,这在GNN-based推荐模型中并不多见。检索后发现,目前时空GNN多用于交通预测领域。

纵然GNN-based模型效果已然不错,但与基于空间的聚合方法相比,STAM-GNN在推荐方面还是有了显著的改进,例如,针对MRR@20,STAM-GNN在MovieLens提升为24%,Amazon为8%,淘宝为13%

鉴于文章简洁有意思,并且与GNN-based模型、序列化模型如LightGCN对比效果都有很大提升,特此向大家分享。

论文标题:STAM: A Spatiotemporal Aggregation Method for Graph Neural Network-based Recommendation

论文链接:https://doi.org/10.1145/3485447.3512041

一、STAM核心思想

本文由阿里和清华KEG实验室发表于WWW2022上。初看题目,笔者不禁脑洞思考:目前已有充分挖掘用户动态意图的序列推荐模型(如经典的SASRec、BERT4Rec),也有较多论文在序列问题中对GNN进行建模(如GCE-GNN等),这与文章所提的模型STAM-GNN有何区别?又有什么具体意义呢?其实文章在section 3.4有部分解答,我在此处做个简要重述。

  • STAM和SASRec都利用时序信息来学习用户和物品的embedding,但推荐的类型不同,STAM侧重基于GNN的推荐
  • 从题目也可看出,作者所提出的STAM作为一种基于GNN的聚合方式,在挖掘用户-物品交互二部图的空间信息之外,创新点在于结合了交互的时序信息。
  • 引用文章的一个例子来重温一下时序对于GNN-based推荐模型的意义。

    Figure1中推荐系统要为Sherry和Amy推荐商品,在图的上半部分Spatio-based Aggregation(基于空间的GNN聚合)中,由于两人交互的商品是相同的,系统为两人推荐了相同的物品。

    但在图的下半部分Spatiotemporal-based Aggregation中,时间信息被整合到了邻居的表示学习中,系统考虑到了两人交互的物品与时间的关系,给Sherry推荐了电子产品,而给Amy推荐了化妆品。

    一句话结论:时间顺序在捕获用户的动态兴趣和用户群随时间的变化方面起着至关重要的作用

    二、算法细节 

    要点一:如何设计结合时间信息的聚合方式?

    GNN-based模型大家应当很熟悉了,关键步骤包括:①Embedding Layer、②Embedding Aggregation Layer、 ③Embedding Propagation Layer与④Prediction Layer。

    今天的主角STAM正处于第三步”Embedding聚合部分“。目前的GNN的聚合方式有多种,不过大致可以分为四类:

  • ”mean pooling“,即以平等的方式对待所有邻居;
  • “degree normalization”,根据图结构为节点指定权重;
  • ”attentive pooling“,利用注意机制区分邻居的重要性;
  • ”central node augmentation“,考虑节点之间的相关性,并使用中心节点过滤邻居信息。
  • 很遗憾上述方式都只涉及了图的空间结构信息,无法加入时间信息。

    为了在聚合过程中加入时间属性,首先考虑对用户-物品交互进行时序建模,与普通的GNN-based模型不同,STAM以时序序列,采用look-up operation得到一跳邻居生成的时空embedding,。接下来在embedding中加入位置编码,得到包含位置信息的序列表示。

    接下来的步骤较为常规,为了将时间信息整合到邻居表示学习中,STAM 利用 Scaled Dot-Product Attention 来捕获一阶邻居的时间顺序,并利用多头注意力机制在不同的潜在子空间上执行联合注意力。

    最后对得到的两个序列矩阵中的每个embedding求均值,得到最终的序列表示。

    要点二:基于Light-GCN的应用实例

    STAM只是一种基于GNN的聚合方式,不改变基于 GNN 推荐的框架,可以很自然地插入到现有的基于 GNN 的推荐模型中。在model的后半部分,作者以Light-GCN为基础模型,介绍了如何在GNN模型中应用STAM,即要点1未涉及到的embedding传播和池化问题:

    注意在embedding逐层传播公式里有个新鲜的变量,这是一个从和学习到的注意力权重矩阵,将其与邻接矩阵做内积,可以节约内存。

    三、实验结果

    模型的最终效果还算不错,如笔记开篇所述,与基于空间的聚合方法相比,STAM在MoiveLens数据集、Amazon数据集和淘宝数据集上,实现了显著的性能提升,针对MRR@20分别提升了24.32%、7.78%和12.5%。STAM使时间信息集成到聚合中,有利于GNN-based模型中用户和物品的embedding表示学习。

    将STAM与四个具有代表性的序列模型进行比较,包括GRU4Rec、Caser、SASRec和BERT4Rec。可以看出,在大多数情况下,STAM的表现优于最佳baseline BERT4Rec。这种改进可能归因于空间图结构,它可以利用消息传播来传递用户-物品图中的embedding表示。

    此外,作者提供了消融实验,与传统的基于空间的聚合方法进行了比较。

    四、总结

    预测任务是神奇而神秘的。在人们结合目前所拥有的各种信息,而对事件未来的走向进行预测时,往往由于一些未曾被观测到的未知因素的存在,不能得到一个必然的结果。不过从乐观态度出发,当我们能够捕捉到更多特征信息之后,理论结果应当是愈加逼近现实的。

    GNN是一个应用广泛的模型,并且衍生出了许多变体。在本文中,GNN遇到时序信息,提出了一种通用的时空聚合方法——STAM来学习时空邻居embedding,并用于邻居表示学习。一个可以遇见的事实是,未来GNN还会带着这种包容的态度融入更多辅助信息,一直发展壮大下去。

    文末向大家提出几个问题,欢迎大家一起讨论~

  • 你还知道哪些结合时空信息的GNN推荐模型,与STAM有何区别,优势在哪?
  • 论文所提STAM是一种GNN-based聚合方式,是否可以和其他技术结合增强节点表示效果?
  • 类似STAM的思想,除了时间属性,还有哪些辅助信息值得关注呢?
  • ©著作权归作者所有,转载或内容合作请联系作者
    • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
      沈念sama阅读 216,402评论 6 499
    • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
      沈念sama阅读 92,377评论 3 392
    • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
      开封第一讲书人阅读 162,483评论 0 353
    • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
      开封第一讲书人阅读 58,165评论 1 292
    • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
      茶点故事阅读 67,176评论 6 388
    • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
      开封第一讲书人阅读 51,146评论 1 297
    • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
      沈念sama阅读 40,032评论 3 417
    • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
      开封第一讲书人阅读 38,896评论 0 274
    • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
      沈念sama阅读 45,311评论 1 310
    • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
      茶点故事阅读 37,536评论 2 332
    • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
      茶点故事阅读 39,696评论 1 348
    • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
      沈念sama阅读 35,413评论 5 343
    • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
      茶点故事阅读 41,008评论 3 325
    • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
      开封第一讲书人阅读 31,659评论 0 22
    • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
      开封第一讲书人阅读 32,815评论 1 269
    • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
      沈念sama阅读 47,698评论 2 368
    • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
      茶点故事阅读 44,592评论 2 353

    推荐阅读更多精彩内容