global_planner
GlobalPlanner: # Also see: http://wiki.ros.org/global_planner
old_navfn_behavior: false # Exactly mirror behavior of navfn, use defaults for other boolean parameters, default false
use_quadratic: true # Use the quadratic approximation of the potential. Otherwise, use a simpler calculation, default true
use_dijkstra: true # Use dijkstra's algorithm. Otherwise, A*, default true
use_grid_path: false # Create a path that follows the grid boundaries. Otherwise, use a gradient descent method, default false
allow_unknown: true # Allow planner to plan through unknown space, default true
#Needs to have track_unknown_space: true in the obstacle / voxel layer (in costmap_commons_param) to work
planner_window_x: 0.0 # default 0.0
planner_window_y: 0.0 # default 0.0
default_tolerance: 0.5 # If goal in obstacle, plan to the closest point in radius default_tolerance, default 0.0
publish_scale: 100 # Scale by which the published potential gets multiplied, default 100
planner_costmap_publish_frequency: 0.0 # default 0.0
lethal_cost: 253 # default 253
neutral_cost: 66 # default 50
cost_factor: 0.55 # Factor to multiply each cost from costmap by, default 3.0
publish_potential: true # Publish Potential Costmap (this is not like the navfn pointcloud2 potential), default true
move_base 中的base_global_planner
配置为
base_global_planner: global_planner/GlobalPlanner
先看下global_planner
的接口定义(前面讲过所有的实际的都是该接口的实现)
接口很简单,总共只有三个还有个重载函数,看名字就知道,一个初始化,还有个是规划路径,可以的话你也可以实现这些接口完成你自己的
global_planner
,目前可以使用的有三种
-
navfn/NavfnROS
使用Dijkstra’s
算法代价最小的规划 -
global_planner/GlobalPlanner
提供更多选项支持不同配置 carrot_planner/CarrotPlanner
-allow unknown(true)
use dijkstra(true)
use quadratic(true)
use grid path(false)
-
old navfn behavior(false)
这些设置默认参数即可 -
default_tolerance
当目标点为障碍时,规划可以有一定的允许误差 lethal_cost
neutral_cost
-
cost_factor
摘自【ROS Navigation Tuning Guide】
local_planner
DWAPlannerROS:
# Robot Configuration Parameters - Kobuki
max_vel_x: 0.25
min_vel_x: 0.05
max_vel_y: 0
min_vel_y: 0
max_trans_vel: 0.35 # choose slightly less than the base's capability
min_trans_vel: 0.001 # this is the min trans velocity when there is negligible rotational velocity
trans_stopped_vel: 0.05
# Warning!
# do not set min_trans_vel to 0.0 otherwise dwa will always think translational velocities
# are non-negligible and small in place rotational velocities will be created.
max_rot_vel: 0.6 # choose slightly less than the base's capability
min_rot_vel: 0.4 # this is the min angular velocity when there is negligible translational velocity
rot_stopped_vel: 0.1
acc_lim_x: 1 # maximum is theoretically 2.0, but we
acc_lim_theta: 1.5
acc_lim_y: 0 # diff drive robot
# Goal Tolerance Parameters
yaw_goal_tolerance: 0.2
xy_goal_tolerance: 0.15
latch_xy_goal_tolerance: true
# Forward Simulation Parameters
sim_time: 2.0 # 1.7
vx_samples: 10 # 3
vy_samples: 1
vtheta_samples: 20 # 20
# Trajectory Scoring Parameters
path_distance_bias: 32.0 # 32.0 - weighting for how much it should stick to the global path plan
goal_distance_bias: 24.0 # 24.0 - wighting for how much it should attempt to reach its goal
occdist_scale: 0.4 # 0.01 - weighting for how much the controller should avoid obstacles
forward_point_distance: 0.325 # 0.325 - how far along to place an additional scoring point
stop_time_buffer: 0.2 # 0.2 - amount of time a robot must stop in before colliding for a valid traj.
scaling_speed: 0.25 # 0.25 - absolute velocity at which to start scaling the robot's footprint
max_scaling_factor: 0.2 # 0.2 - how much to scale the robot's footprint when at speed.
# Oscillation Prevention Parameters
oscillation_reset_dist: 0.05 # 0.05 - how far to travel before resetting oscillation flags
# Debugging
publish_traj_pc : true
publish_cost_grid_pc: true
global_frame_id: odom
# Differential-drive robot configuration - necessary?
# holonomic_robot: false
move_base 中的base_local_planner
配置为
base_local_planner: "dwa_local_planner/DWAPlannerROS"
同样该类实现了base_local_planner
的接口,我们看下接口
接口也不算复杂,字面理解分别为:
计算速度
是否到达目标点
下发全局路径
初始化
参数说明max_vel_x
min_vel_x
max_vel_y
min_vel_y
速度限定值max_trans_vel
min_trans_vel
平移速度限定值trans_stopped_vel
未使用max_rot_vel
min_rot_vel
旋转的速度限定值rot_stopped_vel
未使用acc_lim_x
acc_lim_theta
acc_lim_y
加速度限定值yaw_goal_tolerance
xy_goal_tolerance
到达目标点的允许误差latch_xy_goal_tolerance
如果为true
当机器人到达目标点后通过旋转调整姿态(方向)后,偏离了目标点,也认为完成。这个实际应用中还是比较酷的-
sim_time
模拟机器人以采样速度行走的时间,太小(<2)会导致行走不流畅,特别在遇到障碍或狭窄的空间,因为没有足够多时间获取路径;太大(>5)会导致以僵硬的轨迹行走使得机器人不太灵活。如果太多会容易导致偏离全局的路径,特别启动的时候会转较大的半径,如果想启动的时候基本原地旋转摆正机器人的方向和全局路径的方向一致,那么就把模拟的时间设置短点。如果太小的仿真时间也不好,容易导致频繁的路径规划消耗资源,甚至也会出现震荡的可能。
-
vx_samples
vy_samples
vtheta_samples
采样速度个数, 一般vtheta_samples
大于vx_samples
vy_samples
怎么不是0?查看源码即可得到答案, 最小为1,即使设置<=0也会重新置1
-
path_distance_bias
goal_distance_bias
occdist_scale
轨迹代价计算
-
path_dist
规划最后一个点距离全局路径的距离,即决定local_plan
多接近global_plan
-
goal_distance
规格最后一个点距离local目标距离,决定机器人接近目标 -
occdist_scale
路径中避障代价
-
另外还有
-
sim_granularity
轨迹上的点的密集程度
在45.在ROS中实现global planner(1)我们实现了一个global planner的例子