上篇相关文章讲了怎么从JNI里面拿到数字字符串,这次具体实现以下怎么在C里面加密,并且返回。在此基础上,我们进行操作。
这次主要在C里面使用base64和md5的方式。Java里面md5和base64加密很简单。C里面,暂时需要别人的库。这里我直接在github上找的直接先复制粘贴过来。需要的自行复制,不需要的跳过,直接进入下一环节。
md5.java 文件
public class MD5Utils {
/**
* 16进制的字符数组
*/
private static final String[] hexDigits = {"0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d",
"e", "f"};
/**
* 对字符串进行MD5加密
*
* @param content
* @return
*/
public static String encryptedByMD5(String content) {
String result = null;
try {
result = content;
MessageDigest messageDigest = MessageDigest.getInstance("MD5");
messageDigest.update(result.getBytes());
result = byteArrayToHexString(messageDigest.digest());
} catch (Exception e) {
e.printStackTrace();
}
return result.toUpperCase(Locale.getDefault());
}
/**
* 32位加密
* @param content
* @return
*/
public static String encryptedByMD5_32(String content) {
String re_md5 = new String();
try {
MessageDigest md = MessageDigest.getInstance("MD5");
md.update(content.getBytes());
byte b[] = md.digest();
int i;
StringBuffer buf = new StringBuffer("");
for (int offset = 0; offset < b.length; offset++) {
i = b[offset];
if (i < 0) {
i += 256;
}
if (i < 16) {
buf.append("0");
}
buf.append(Integer.toHexString(i));
}
re_md5 = buf.toString();
} catch (NoSuchAlgorithmException e) {
e.printStackTrace();
}
return re_md5;
}
/**
* 转换字节数组为16进制字符串
*
* @param bytes 字节数组
* @return
*/
private static String byteArrayToHexString(byte[] bytes) {
StringBuilder stringBuilder = new StringBuilder();
for (byte tem : bytes) {
stringBuilder.append(byteToHexString(tem));
}
return stringBuilder.toString();
}
/**
* 转换byte到16进制
*
* @param b 要转换的byte
* @return 16进制对应的字符
*/
private static String byteToHexString(byte b) {
int n = b;
if (n < 0) {
n = 256 + n;
}
int d1 = n / 16;
int d2 = n % 16;
return hexDigits[d1] + hexDigits[d2];
}
}
base64.h的文件
/**
* `b64.h' - b64
*
* copyright (c) 2014 joseph werle
*/
#ifndef B64_H
#define B64_H 1
//#include <cwchar>
/**
* Base64 index table.
*/
static const char b64_table[] = {
'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H',
'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P',
'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X',
'Y', 'Z', 'a', 'b', 'c', 'd', 'e', 'f',
'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n',
'o', 'p', 'q', 'r', 's', 't', 'u', 'v',
'w', 'x', 'y', 'z', '0', '1', '2', '3',
'4', '5', '6', '7', '8', '9', '+', '/'
};
#ifdef __cplusplus
extern "C" {
#endif
/**
* Encode `unsigned char *' source with `size_t' size.
* Returns a `char *' base64 encoded string.
*/
char *
b64_encode (const unsigned char *, size_t);
/**
* Dencode `char *' source with `size_t' size.
* Returns a `unsigned char *' base64 decoded string.
*/
unsigned char *
b64_decode (const char *, size_t);
/**
* Dencode `char *' source with `size_t' size.
* Returns a `unsigned char *' base64 decoded string + size of decoded string.
*/
unsigned char *
b64_decode_ex (const char *, size_t, size_t *);
#ifdef __cplusplus
}
#endif
#endif
bas64.c文件
/**
* `encode.c' - b64
*
* copyright (c) 2014 joseph werle
*/
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>
#include "base64.h"
char *
b64_encode (const unsigned char *src, size_t len) {
int i = 0;
int j = 0;
char *enc = NULL;
size_t size = 0;
unsigned char buf[4];
unsigned char tmp[3];
// alloc
enc = (char *) malloc(0);
if (NULL == enc) { return NULL; }
// parse until end of source
while (len--) {
// read up to 3 bytes at a time into `tmp'
tmp[i++] = *(src++);
// if 3 bytes read then encode into `buf'
if (3 == i) {
buf[0] = (tmp[0] & 0xfc) >> 2;
buf[1] = ((tmp[0] & 0x03) << 4) + ((tmp[1] & 0xf0) >> 4);
buf[2] = ((tmp[1] & 0x0f) << 2) + ((tmp[2] & 0xc0) >> 6);
buf[3] = tmp[2] & 0x3f;
// allocate 4 new byts for `enc` and
// then translate each encoded buffer
// part by index from the base 64 index table
// into `enc' unsigned char array
enc = (char *) realloc(enc, size + 4);
for (i = 0; i < 4; ++i) {
enc[size++] = b64_table[buf[i]];
}
// reset index
i = 0;
}
}
// remainder
if (i > 0) {
// fill `tmp' with `\0' at most 3 times
for (j = i; j < 3; ++j) {
tmp[j] = '\0';
}
// perform same codec as above
buf[0] = (tmp[0] & 0xfc) >> 2;
buf[1] = ((tmp[0] & 0x03) << 4) + ((tmp[1] & 0xf0) >> 4);
buf[2] = ((tmp[1] & 0x0f) << 2) + ((tmp[2] & 0xc0) >> 6);
buf[3] = tmp[2] & 0x3f;
// perform same write to `enc` with new allocation
for (j = 0; (j < i + 1); ++j) {
enc = (char *) realloc(enc, size + 1);
enc[size++] = b64_table[buf[j]];
}
// while there is still a remainder
// append `=' to `enc'
while ((i++ < 3)) {
enc = (char *) realloc(enc, size + 1);
enc[size++] = '=';
}
}
// Make sure we have enough space to add '\0' character at end.
enc = (char *) realloc(enc, size + 1);
enc[size] = '\0';
return enc;
}
unsigned char *
b64_decode(const char *src, size_t len) {
return b64_decode_ex(src, len, NULL);
}
unsigned char *
b64_decode_ex(const char *src, size_t len, size_t *decsize) {
int i = 0;
int j = 0;
int l = 0;
size_t size = 0;
unsigned char *dec = NULL;
unsigned char buf[3];
unsigned char tmp[4];
// alloc
dec = (unsigned char *) malloc(0);
if (NULL == dec) { return NULL; }
// parse until end of source
while (len--) {
// break if char is `=' or not base64 char
if ('=' == src[j]) { break; }
if (!(isalnum(src[j]) || '+' == src[j] || '/' == src[j])) { break; }
// read up to 4 bytes at a time into `tmp'
tmp[i++] = src[j++];
// if 4 bytes read then decode into `buf'
if (4 == i) {
// translate values in `tmp' from table
for (i = 0; i < 4; ++i) {
// find translation char in `b64_table'
for (l = 0; l < 64; ++l) {
if (tmp[i] == b64_table[l]) {
tmp[i] = l;
break;
}
}
}
// decode
buf[0] = (tmp[0] << 2) + ((tmp[1] & 0x30) >> 4);
buf[1] = ((tmp[1] & 0xf) << 4) + ((tmp[2] & 0x3c) >> 2);
buf[2] = ((tmp[2] & 0x3) << 6) + tmp[3];
// write decoded buffer to `dec'
dec = (unsigned char *) realloc(dec, size + 3);
for (i = 0; i < 3; ++i) {
dec[size++] = buf[i];
}
// reset
i = 0;
}
}
// remainder
if (i > 0) {
// fill `tmp' with `\0' at most 4 times
for (j = i; j < 4; ++j) {
tmp[j] = '\0';
}
// translate remainder
for (j = 0; j < 4; ++j) {
// find translation char in `b64_table'
for (l = 0; l < 64; ++l) {
if (tmp[j] == b64_table[l]) {
tmp[j] = l;
break;
}
}
}
// decode remainder
buf[0] = (tmp[0] << 2) + ((tmp[1] & 0x30) >> 4);
buf[1] = ((tmp[1] & 0xf) << 4) + ((tmp[2] & 0x3c) >> 2);
buf[2] = ((tmp[2] & 0x3) << 6) + tmp[3];
// write remainer decoded buffer to `dec'
dec = (unsigned char *) realloc(dec, size + (i - 1));
for (j = 0; (j < i - 1); ++j) {
dec[size++] = buf[j];
}
}
// Make sure we have enough space to add '\0' character at end.
dec = (unsigned char *) realloc(dec, size + 1);
dec[size] = '\0';
// Return back the size of decoded string if demanded.
if (decsize != NULL) *decsize = size;
return dec;
}
md5.h的文件
//
// Created by wei on 16-11-28.
//
//#ifndef ENCRYPTJNI_MD5_H_H
//#define ENCRYPTJNI_MD5_H_H
//
#include <stdint.h>
/* POINTER defines a generic pointer type */
typedef unsigned char *POINTER;
/* UINT2 defines a two byte word */
typedef unsigned short int UINT2;
/* UINT4 defines a four byte word */
//===============================bugfix:arm64下跟java 下的md5接过不同的问题===============
//typedef unsigned long int UINT4;// 这个已经废弃 否则导致 armv864下出现跟java下MD5不同的问题
typedef uint32_t UINT4;
/* PROTO_LIST is defined depending on how PROTOTYPES is defined above.
If using PROTOTYPES, then PROTO_LIST returns the list, otherwise it
returns an empty list.
*/
/* MD5 context. */
typedef struct tagMD5_CTX{
UINT4 state[4]; /* state (ABCD) */
UINT4 count[2]; /* number of bits, modulo 2^64 (lsb first) */
unsigned char buffer[64]; /* input buffer */
} MD5_CTX;
#ifdef __cplusplus
extern "C" {
#endif
void MD5Init (MD5_CTX *context);
void MD5Update (MD5_CTX *context,unsigned char *input,unsigned int inputLen);
void MD5Final (unsigned char digest[16], MD5_CTX *context);
static void MD5Transform (UINT4 state[4], unsigned char block[64]);
static void Encode (unsigned char *output, UINT4 *input, unsigned int len);
static void Decode (UINT4 *output, unsigned char *input, unsigned int len);
static void MD5_memcpy (POINTER output, POINTER input, unsigned int len);
static void MD5_memset (POINTER output, int value, unsigned int len);
#ifdef __cplusplus
}
#endif
//#endif //ENCRYPTJNI_MD5_H_H
md5.c的文件
//
// Created by wei on 16-11-28.
//
#include "md5.h"
/* Constants for MD5Transform routine.
*/
#define S11 7
#define S12 12
#define S13 17
#define S14 22
#define S21 5
#define S22 9
#define S23 14
#define S24 20
#define S31 4
#define S32 11
#define S33 16
#define S34 23
#define S41 6
#define S42 10
#define S43 15
#define S44 21
static unsigned char PADDING[64] = {
0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
/* F, G, H and I are basic MD5 functions.
*/
#define F(x, y, z) (((x) & (y)) | ((~x) & (z)))
#define G(x, y, z) (((x) & (z)) | ((y) & (~z)))
#define H(x, y, z) ((x) ^ (y) ^ (z))
#define I(x, y, z) ((y) ^ ((x) | (~z)))
/* ROTATE_LEFT rotates x left n bits.
*/
#define ROTATE_LEFT(x, n) (((x) << (n)) | ((x) >> (32-(n))))
/* FF, GG, HH, and II transformations for rounds 1, 2, 3, and 4.
Rotation is separate from addition to prevent recomputation.
*/
#define FF(a, b, c, d, x, s, ac) { \
(a) += F ((b), (c), (d)) + (x) + (UINT4)(ac); \
(a) = ROTATE_LEFT ((a), (s)); \
(a) += (b); \
}
#define GG(a, b, c, d, x, s, ac) { \
(a) += G ((b), (c), (d)) + (x) + (UINT4)(ac); \
(a) = ROTATE_LEFT ((a), (s)); \
(a) += (b); \
}
#define HH(a, b, c, d, x, s, ac) { \
(a) += H ((b), (c), (d)) + (x) + (UINT4)(ac); \
(a) = ROTATE_LEFT ((a), (s)); \
(a) += (b); \
}
#define II(a, b, c, d, x, s, ac) { \
(a) += I ((b), (c), (d)) + (x) + (UINT4)(ac); \
(a) = ROTATE_LEFT ((a), (s)); \
(a) += (b); \
}
/* MD5 initialization. Begins an MD5 operation, writing a new context.
*/
void MD5Init (MD5_CTX *context)
{
context->count[0] = context->count[1] = 0;
/* Load magic initialization constants.
*/
context->state[0] = 0x67452301;
context->state[1] = 0xefcdab89;
context->state[2] = 0x98badcfe;
context->state[3] = 0x10325476;
}
/* MD5 block update operation. Continues an MD5 message-digest
operation, processing another message block, and updating the
context.
*/
void MD5Update (MD5_CTX *context,unsigned char *input,unsigned int inputLen)
{
unsigned int i, index, partLen;
/* Compute number of bytes mod 64 */
index = (unsigned int)((context->count[0] >> 3) & 0x3F);
/* Update number of bits */
if ((context->count[0] += ((UINT4)inputLen << 3))
< ((UINT4)inputLen << 3))
context->count[1]++;
context->count[1] += ((UINT4)inputLen >> 29);
partLen = 64 - index;
/* Transform as many times as possible.
*/
if (inputLen >= partLen) {
MD5_memcpy
((POINTER)&context->buffer[index], (POINTER)input, partLen);
MD5Transform (context->state, context->buffer);
for (i = partLen; i + 63 < inputLen; i += 64)
MD5Transform (context->state, &input[i]);
index = 0;
}
else
i = 0;
/* Buffer remaining input */
MD5_memcpy
((POINTER)&context->buffer[index], (POINTER)&input[i],
inputLen-i);
}
/* MD5 finalization. Ends an MD5 message-digest operation, writing the
the message digest and zeroizing the context.
*/
void MD5Final (unsigned char digest[16], MD5_CTX *context)
{
unsigned char bits[8];
unsigned int index, padLen;
/* Save number of bits */
Encode (bits, context->count, 8);
/* Pad out to 56 mod 64.
*/
index = (unsigned int)((context->count[0] >> 3) & 0x3f);
padLen = (index < 56) ? (56 - index) : (120 - index);
MD5Update (context, PADDING, padLen);
/* Append length (before padding) */
MD5Update (context, bits, 8);
/* Store state in digest */
Encode (digest, context->state, 16);
/* Zeroize sensitive information.
*/
MD5_memset ((POINTER)context, 0, sizeof (*context));
}
/* MD5 basic transformation. Transforms state based on block.
*/
static void MD5Transform (UINT4 state[4], unsigned char block[64])
{
UINT4 a = state[0], b = state[1], c = state[2], d = state[3], x[16];
Decode (x, block, 64);
/* Round 1 */
FF (a, b, c, d, x[ 0], S11, 0xd76aa478); /* 1 */
FF (d, a, b, c, x[ 1], S12, 0xe8c7b756); /* 2 */
FF (c, d, a, b, x[ 2], S13, 0x242070db); /* 3 */
FF (b, c, d, a, x[ 3], S14, 0xc1bdceee); /* 4 */
FF (a, b, c, d, x[ 4], S11, 0xf57c0faf); /* 5 */
FF (d, a, b, c, x[ 5], S12, 0x4787c62a); /* 6 */
FF (c, d, a, b, x[ 6], S13, 0xa8304613); /* 7 */
FF (b, c, d, a, x[ 7], S14, 0xfd469501); /* 8 */
FF (a, b, c, d, x[ 8], S11, 0x698098d8); /* 9 */
FF (d, a, b, c, x[ 9], S12, 0x8b44f7af); /* 10 */
FF (c, d, a, b, x[10], S13, 0xffff5bb1); /* 11 */
FF (b, c, d, a, x[11], S14, 0x895cd7be); /* 12 */
FF (a, b, c, d, x[12], S11, 0x6b901122); /* 13 */
FF (d, a, b, c, x[13], S12, 0xfd987193); /* 14 */
FF (c, d, a, b, x[14], S13, 0xa679438e); /* 15 */
FF (b, c, d, a, x[15], S14, 0x49b40821); /* 16 */
/* Round 2 */
GG (a, b, c, d, x[ 1], S21, 0xf61e2562); /* 17 */
GG (d, a, b, c, x[ 6], S22, 0xc040b340); /* 18 */
GG (c, d, a, b, x[11], S23, 0x265e5a51); /* 19 */
GG (b, c, d, a, x[ 0], S24, 0xe9b6c7aa); /* 20 */
GG (a, b, c, d, x[ 5], S21, 0xd62f105d); /* 21 */
GG (d, a, b, c, x[10], S22, 0x2441453); /* 22 */
GG (c, d, a, b, x[15], S23, 0xd8a1e681); /* 23 */
GG (b, c, d, a, x[ 4], S24, 0xe7d3fbc8); /* 24 */
GG (a, b, c, d, x[ 9], S21, 0x21e1cde6); /* 25 */
GG (d, a, b, c, x[14], S22, 0xc33707d6); /* 26 */
GG (c, d, a, b, x[ 3], S23, 0xf4d50d87); /* 27 */
GG (b, c, d, a, x[ 8], S24, 0x455a14ed); /* 28 */
GG (a, b, c, d, x[13], S21, 0xa9e3e905); /* 29 */
GG (d, a, b, c, x[ 2], S22, 0xfcefa3f8); /* 30 */
GG (c, d, a, b, x[ 7], S23, 0x676f02d9); /* 31 */
GG (b, c, d, a, x[12], S24, 0x8d2a4c8a); /* 32 */
/* Round 3 */
HH (a, b, c, d, x[ 5], S31, 0xfffa3942); /* 33 */
HH (d, a, b, c, x[ 8], S32, 0x8771f681); /* 34 */
HH (c, d, a, b, x[11], S33, 0x6d9d6122); /* 35 */
HH (b, c, d, a, x[14], S34, 0xfde5380c); /* 36 */
HH (a, b, c, d, x[ 1], S31, 0xa4beea44); /* 37 */
HH (d, a, b, c, x[ 4], S32, 0x4bdecfa9); /* 38 */
HH (c, d, a, b, x[ 7], S33, 0xf6bb4b60); /* 39 */
HH (b, c, d, a, x[10], S34, 0xbebfbc70); /* 40 */
HH (a, b, c, d, x[13], S31, 0x289b7ec6); /* 41 */
HH (d, a, b, c, x[ 0], S32, 0xeaa127fa); /* 42 */
HH (c, d, a, b, x[ 3], S33, 0xd4ef3085); /* 43 */
HH (b, c, d, a, x[ 6], S34, 0x4881d05); /* 44 */
HH (a, b, c, d, x[ 9], S31, 0xd9d4d039); /* 45 */
HH (d, a, b, c, x[12], S32, 0xe6db99e5); /* 46 */
HH (c, d, a, b, x[15], S33, 0x1fa27cf8); /* 47 */
HH (b, c, d, a, x[ 2], S34, 0xc4ac5665); /* 48 */
/* Round 4 */
II (a, b, c, d, x[ 0], S41, 0xf4292244); /* 49 */
II (d, a, b, c, x[ 7], S42, 0x432aff97); /* 50 */
II (c, d, a, b, x[14], S43, 0xab9423a7); /* 51 */
II (b, c, d, a, x[ 5], S44, 0xfc93a039); /* 52 */
II (a, b, c, d, x[12], S41, 0x655b59c3); /* 53 */
II (d, a, b, c, x[ 3], S42, 0x8f0ccc92); /* 54 */
II (c, d, a, b, x[10], S43, 0xffeff47d); /* 55 */
II (b, c, d, a, x[ 1], S44, 0x85845dd1); /* 56 */
II (a, b, c, d, x[ 8], S41, 0x6fa87e4f); /* 57 */
II (d, a, b, c, x[15], S42, 0xfe2ce6e0); /* 58 */
II (c, d, a, b, x[ 6], S43, 0xa3014314); /* 59 */
II (b, c, d, a, x[13], S44, 0x4e0811a1); /* 60 */
II (a, b, c, d, x[ 4], S41, 0xf7537e82); /* 61 */
II (d, a, b, c, x[11], S42, 0xbd3af235); /* 62 */
II (c, d, a, b, x[ 2], S43, 0x2ad7d2bb); /* 63 */
II (b, c, d, a, x[ 9], S44, 0xeb86d391); /* 64 */
state[0] += a;
state[1] += b;
state[2] += c;
state[3] += d;
/* Zeroize sensitive information.
*/
MD5_memset ((POINTER)x, 0, sizeof (x));
}
/* Encodes input (UINT4) into output (unsigned char). Assumes len is
a multiple of 4.
*/
static void Encode (unsigned char *output, UINT4 *input, unsigned int len)
{
unsigned int i, j;
for (i = 0, j = 0; j < len; i++, j += 4) {
output[j] = (unsigned char)(input[i] & 0xff);
output[j+1] = (unsigned char)((input[i] >> 8) & 0xff);
output[j+2] = (unsigned char)((input[i] >> 16) & 0xff);
output[j+3] = (unsigned char)((input[i] >> 24) & 0xff);
}
}
/* Decodes input (unsigned char) into output (UINT4). Assumes len is
a multiple of 4.
*/
static void Decode (UINT4 *output, unsigned char *input, unsigned int len)
{
unsigned int i, j;
for (i = 0, j = 0; j < len; i++, j += 4)
output[i] = ((UINT4)input[j]) | (((UINT4)input[j+1]) << 8) |
(((UINT4)input[j+2]) << 16) | (((UINT4)input[j+3]) << 24);
}
/* Note: Replace "for loop" with standard memcpy if possible.
*/
static void MD5_memcpy (POINTER output, POINTER input, unsigned int len)
{
unsigned int i;
for (i = 0; i < len; i++)
output[i] = input[i];
}
/* Note: Replace "for loop" with standard memset if possible.
*/
static void MD5_memset (POINTER output, int value, unsigned int len)
{
unsigned int i;
for (i = 0; i < len; i++)
((char *)output)[i] = (char)value;
}
好了文件都复制完成之后,咱们进入正题。
我们设计一个加密方式,几个字段了解一下。
没加密之前的String originalString ="xxx" (xxx代表你输入需要加密的字符串
这里before的字符串和after的字符串 暂时这么定义,你也可以用你自己需要的
字符串String before="info_"
字符串String after="after"
原始的字段开始加上before,末尾加上after,然后对此增加后的字符串进行base64加密,加密之后,md5加密这个base64加密后的。然后后面跟上一个当前时间的md5加密值,最后再整体md5加密一下。具体的java代码如下
public String getUrl(String originalString, String before, String after) {
String temp = null;
try {
temp = new String(Base64.encode((before + originalString + after).getBytes("utf-8"), Base64.NO_WRAP), "utf-8");
} catch (UnsupportedEncodingException e) {
e.printStackTrace();
}
String sign = MD5Utils.encryptedByMD5_32(MD5Utils.encryptedByMD5_32(temp) + MD5Utils.encryptedByMD5_32(currentTime));
return sign;
}
JNI层面的代码如下
JNIEXPORT jstring JNICALL
Java_com_boxun_zhao_jni_NativeUtil_getSign(JNIEnv *env, jclass type, jstring token_,
jstring time_) {
const char *token = env->GetStringUTFChars(token_, 0);
const char *time = env->GetStringUTFChars(time_, 0);
string addedString(token);
addedString.insert(0, BEFORE);
addedString.insert(addedString.length(), AFTER);
char *token_b64 = b64_encode((const unsigned char *) addedString.c_str(), addedString.length());
char destToken[32] = {0};
getMd5String((unsigned char *) token_b64, destToken);
string md5Token(destToken);
char destTime[32] = {0};
getMd5String((unsigned char *) time, destTime);
string md5Time(destTime);
md5Token.insert(md5Token.length(), md5Time);
char signArray[32] = {0};
getMd5String((unsigned char *) md5Token.c_str(), signArray);
env->ReleaseStringUTFChars(token_, token);
env->ReleaseStringUTFChars(time_, time);
return env->NewStringUTF(signArray);
}
代码里面
BEFORE和AFTER是定义在C里面的全局变量这样java端不需要传递进来
b64_encode是之前复制的base64文件里面的方法,此外需要额外自己写一个调用Md5的方法
static const char *BEFORE = "info_";
static const char *AFTER = "after";
JNI内部调用三方MD5加密部分
void getMd5String(unsigned char *input, char charArray[32]) {
MD5_CTX *ctx = new MD5_CTX();
MD5Init(ctx);
MD5Update(ctx, input, strlen((const char *) input));
unsigned char dest[16] = {0};
MD5Final(dest, ctx);
for (int i = 0; i < 16; i++) {
sprintf(charArray, "%s%02x", charArray, dest[i]);
}
}
此外代码部分基本完成,下面就是测试了,注意相关文件引入,还有包名,这个当时写的时候包名的问题吃了不少亏
String testString="eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiIsImtpZCI6IjcifQ.eyJ1aWQiOiI4NzM2OTk3NyIsImNvZGUiOiJmZWl4dW4qMTIzLlNIXzgxMjgxMzQiLCJ0eXBlIjoiYWNjZXNzX3Rva2VuIiwiaXNzIjoiUGhpY29tbSIsIm5iZiI6MTUzMjMyODkyNSwiZXhwIjoxNTMyNDU4NTI1LCJyZWZyZXNoVGltZSI6IjIwMTgtMDctMjQgMDI6NTU6MjUifQ.Pe8DupJUpXzbcrGDN2yjhZ7K4qXYMfCJOCxTEBvhCcE\n",
currentTime = String.valueOf(System.currentTimeMillis());
TextView tv = (TextView) findViewById(R.id.sample_text);
tv.setText("native加密的结果"+NativeUtil.getSign(testString,currentTime));
Log.e("zbx", "java加密的结果"+getUrl(testString, "info", "after_"));
测试结果
到这里算是初步完成,因为如果这样的话还不是特别安全,别人拿到你编译的so,知道里面的方法名直接调用还是不太安全,这里可以增加一个安卓包的签名校验,之前都是Java调用C,签名校验的时候需要C调用Java,这个在Android加密(三)去写了。
平时比较懒,也比较忙。这段时间比较空,把之前一直想写写了一半的一些总结陆续发布出来,算是技术交流了,如果有什么写的不对或者讲的不对的,欢迎批评指导。