【PHP】Redis的内存过期与淘汰策略是如何工作的?你还不知道?

Redis 内存回收机制

Redis 的内存回收主要围绕以下两个方面:

1.Redis 过期策略:删除过期时间的 key 值

2.Redis 淘汰策略:内存使用到达 maxmemory 上限时触发内存淘汰数据

Redis 的过期策略和内存淘汰策略不是一件事,实际研发中不要弄混淆了,下面会完整的介绍两者。

Redis过期策略

过期策略通常有以下三种:

1.定时过期

每个设置过期时间的 key 都需要创建一个定时器,到过期时间就会立即清除。该策略可以立即清除过期的数据,对内存很友好;但是会占用大量的 CPU 资源去处理过期的数据,从而影响缓存的响应时间和吞吐量。

2.惰性过期

所谓惰性策略就是在客户端访问这个key的时候,redis对key的过期时间进行检查,如果过期了就立即删除,不会给你返回任何东西。

定期删除可能会导致很多过期key到了时间并没有被删除掉。所以就有了惰性删除。假如你的过期 key,靠定期删除没有被删除掉,还停留在内存里,除非你的系统去查一下那个 key,才会被redis给删除掉。这就是所谓的惰性删除,即当你主动去查过期的key时,如果发现key过期了,就立即进行删除,不返回任何东西.

总结:定期删除是集中处理,惰性删除是零散处理。

3.定期过期

redis 会将每个设置了过期时间的 key 放入到一个独立的字典中,以后会定期遍历这个字典来删除到期的 key。

Redis 默认会每秒进行十次过期扫描(100ms一次),过期扫描不会遍历过期字典中所有的 key,而是采用了一种简单的贪心策略。

  • 从过期字典中随机 20 个 key;

  • 删除这 20 个 key 中已经过期的 key;

  • 如果过期的 key 比率超过 1/4,那就重复步骤 1;

redis默认是每隔 100ms就随机抽取一些设置了过期时间的key,检查其是否过期,如果过期就删除。注意这里是随机抽取的。为什么要随机呢?你想一想假如 redis 存了几十万个 key ,每隔100ms就遍历所有的设置过期时间的 key 的话,就会给 CPU 带来很大的负载。

Redis中同时使用了惰性过期和定期过期两种过期策略。

Redis 淘汰策略

先聊一下为什么需要淘汰策略。 有了以上过期策略的说明后,就很容易理解为什么需要淘汰策略了,因为不管是定期采样删除还是惰性删除都不是一种完全精准的删除,就还是会存在key没有被删除掉的场景,所以就需要内存淘汰策略进行补充。

1.简介

Redis 的内存淘汰策略,是指当内存使用达到 maxmemory 极限时,需要使用 LAU 淘汰算法来决定清理掉哪些数据,以保证新数据的存入。

2、LRU 算法

Redis 默认情况下就是使用 LRU 策略算法。

实现方式

在这里插入图片描述
  • 新增key value的时候首先在链表结尾添加Node节点,如果超过LRU设置的阈值就淘汰队头的节点并删除掉HashMap中对应的节点。

  • 修改key对应的值的时候先修改对应的Node中的值,然后把Node节点移动队尾。

  • 访问key对应的值的时候把访问的Node节点移动到队尾即可。

3.缓存清理配置

maxmemory 用来设置 redis 存放数据的最大的内存大小,一旦超出这个内存大小之后,就会立即使用 LRU 算法清理掉部分数据。

对于 64 bit 的机器,如果 maxmemory 设置为 0,那么就默认不限制内存的使用,直到耗尽机器中所有的内存为止,但是对于 32 bit 的机器,有一个隐式的闲置就是 3GB。

4.Redis 数据淘汰策略

maxmemory-policy,可以设置内存达到最大闲置后,采取什么策略来处理。

对应的淘汰策略规则如下:

在这里插入图片描述

1)noeviction:当内存不足以容纳新写入数据时,新写入操作会报错。

2)allkeys-lru:当内存不足以容纳新写入数据时,在键空间中,移除最近最少使用的 key。

3)allkeys-random:当内存不足以容纳新写入数据时,在键空间中,随机移除某个 key。

4)volatile-lru:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,移除最近最少使用的 key。

5)volatile-random:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,随机移除某个 key。

6)volatile-ttl:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,有更早过期时间的 key 优先移除。

5.缓存清理的流程

1)客户端执行数据写入操作

2)redis server 接收到写入操作之后,检查 maxmemory 的限制,如果超过了限制,那么就根据对应的 policy 清理掉部分数据

3)写入操作完成执行。

总结

redis 的内存淘汰策略用于处理内存不足时的需要申请额外空间的数据,内存淘汰策略的选取并不会影响过期的 key 的处理。过期策略用于处理过期的缓存数据。

点关注,不迷路

好了各位,以上就是这篇文章的全部内容了,能看到这里的人呀,都是人才。之前说过,PHP方面的技术点很多,也是因为太多了,实在是写不过来,写过来了大家也不会看的太多,所以我这里把它整理成了PDF和文档,如果有需要的可以

点击进入暗号: PHP+「平台」

在这里插入图片描述
在这里插入图片描述

更多学习内容可以访问【对标大厂】精品PHP架构师教程目录大全,只要你能看完保证薪资上升一个台阶(持续更新)

以上内容希望帮助到大家,很多PHPer在进阶的时候总会遇到一些问题和瓶颈,业务代码写多了没有方向感,不知道该从那里入手去提升,对此我整理了一些资料,包括但不限于:分布式架构、高可扩展、高性能、高并发、服务器性能调优、TP6,laravel,YII2,Redis,Swoole、Swoft、Kafka、Mysql优化、shell脚本、Docker、微服务、Nginx等多个知识点高级进阶干货需要的可以免费分享给大家,需要的可以加入我的 PHP技术交流群

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,658评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,482评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,213评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,395评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,487评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,523评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,525评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,300评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,753评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,048评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,223评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,905评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,541评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,168评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,417评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,094评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,088评论 2 352

推荐阅读更多精彩内容