R语言之数据导出

文章和代码已经归档至【Github仓库:https://github.com/timerring/dive-into-AI 】或者【AIShareLab】回复 R语言 也可获取。

1. 导出数据

由于 R 主要用于数据分析,导入文件比导出文件更常用,但有时我们也需要将数据或分析结果导出。函数 write.table( )write.csv( ) 可以分别将数据导出到一个 .txt 文件和 .csv 文件。

此外,函数 save( ) 可以将工作空间中的指定对象保存为以 .rdata 为扩展名的 R 数据文件。例如:

ID <- 1:5
sex <- c("male", "female", "male", "female", "male")
age <- c(25, 34, 38, 28, 52)
pain <- c(1, 3, 2, 2, 3)      
pain.f <- factor(pain, levels = 1:3, labels = c("mild", "medium", "severe"))   
patients <- data.frame(ID, sex, age, pain.f)
save(patients, file = "patients.rdata")

# 导入数据
load("patients.rdata")

rdata 格式文件占用空间小,用 R 读入速度很快。因此,建议用户在导入其他格式的数据并整理好后,将其保存为 rdata 格式。要导入这种格式的数据,只需调用 load( ) 函数。

2.用 rio 包导入和导出数据

R 中的 rio 包以提供一个类似万能工具的包为目标,用统一的 import( ) 函数和 export( ) 函数简化了用户导入和导出数据的工作。此外,该包里的 convert( ) 函数可以实现不同文件格式之间的转换。rio 包支持多种文件格式,包括 SAS、SPSS、Stata、Excel、MATLAB、Minitab 等其他软件中使用的数据文件格式。

下面以 datasets 包里面的数据集 infert 为例介绍 rio 包的几个常用功能。

当你在本地加载 rio 包时,如果 R 提示有些建议安装的包没有安装,可以运行 install_formats( ) 命令进行安装。

library(rio)
data("infert")
str(infert)
# 'data.frame': 248 obs. of  8 variables:
# $ education     : Factor w/ 3 levels "0-5yrs","6-11yrs",..: 1 1 1 1 2 2 2 2 2 2 ...
# $ age           : num  26 42 39 34 35 36 23 32 21 28 ...
# $ parity        : num  6 1 6 4 3 4 1 2 1 2 ...
# $ induced       : num  1 1 2 2 1 2 0 0 0 0 ...
# $ case          : num  1 1 1 1 1 1 1 1 1 1 ...
# $ spontaneous   : num  2 0 0 0 1 1 0 0 1 0 ...
# $ stratum       : int  1 2 3 4 5 6 7 8 9 10 ...
# $ pooled.stratum: num  3 1 4 2 32 36 6 22 5 19 ...

函数 str( ) 常用于查看数据集的大小(观测的记录数及变量个数),以及各个变量的类型。从上面的输出可以看出,infert 是一个包含 248 个观测记录、每个记录有 8 个变量的数据框。

运行下面的命令将此数据框导出为 .csv 文件:

export(infert, "infert.csv")

在当前工作目录中可以找到刚才导出的名为 infert.csv 的数据文件。运行下面的命令将该文件从 .csv 文件转换成 .sav 文件:

convert("infert.csv", "infert.sav")

然后用函数 import( ) 把上面生成的 .sav 文件导入 R 中,并命名为 infert.data:

infert.data <- import("infert.sav")

比较原始的 infert 数据集和导入的 infert.data 数据集,除了第一个变量 education 的类型不一样,其余没有差别。在 R 中,as 系列函数可以用于实现变量类型的转换。

例如,这里将数据框 infert.data 中的字符型变量 education 转换为因子:

infert.data$education <- as.factor(infert.data$education)
str(infert.data$education)
# Factor w/ 3 levels "0-5 yrs","12+ yrs",..: 1 1 1 1 3 3 3 3 3 3 ...
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,793评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,567评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,342评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,825评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,814评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,680评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,033评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,687评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,175评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,668评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,775评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,419评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,020评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,978评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,206评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,092评论 2 351
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,510评论 2 343

推荐阅读更多精彩内容