图解机器学习读书笔记-CH2:学习模型

常见机器学习模型总结

1. 线性模型

一维输入+基函数形式:

f_\theta(x) = \sum_{j=1}^b\theta_j\phi_j(x) = \theta^T\phi(x)
\phi_j(x)非线性时, f_\theta(x)可以表示复杂模型

基函数:
(1) 多项式
\phi(x) = (1, x, x^2, ..., x^{b-1})^T

(2)三角多项式
\phi(x) = (1, sinx, cosx, sin2x, cos2x, ..., sinmx, cosmx)^T

多维输入形式:

f_\theta(\vec x) = \sum_{j=1}^b\theta_j\phi_j(\vec x) = \theta^T\phi(\vec x)

\phi_j(x)是基函数向量\phi(x) = (\phi_1(x), ..., \phi_b(x))^T)的第j个因子, \theta_j是参数向量\theta=(\theta_1,...,\theta_b)^T的第j个因子.

基函数:
(1) 乘法模型
f_\theta(\vec x) = \sum_{j_1=1}^{b'} \cdots \sum_{j_d=1}^{b'} \theta_{j_1,...,j_d} \phi_{j_1}{(x^{(1)}}) \cdots \phi_{j_d}(x^{(d)})
模型表现力丰富, 其中, b'代表各维参数个数, 参数总和(b′)^d, 易导致维数灾难.
(2) 加法模型
θ(x)=\sum_{k=1}^d\sum_{j=1}^{b'}\theta_{k,j}\phi_j(x^{(k)})
参数总和b'd, 复杂度小, 表现力差

2. 核模型

线性模型基函数和训练样本无关,核模型的基函数会使用输入样本.

核模型是二元核函数K(\cdot,\cdot), 以K(\vec x, x_j)_{j=1}^n的方式线性结合:

f_\theta(x) = \sum_{j=1}^n\theta_jK(x,x_j)

高斯核:
K(x,c) = exp(-\frac{\|x-c\|^2}{2h^2})
, 其中\|\cdot\|表示L2范数\|x\|=\sqrt{x^Tx}, h和c是高斯函数带宽和均值

高斯核函数图:


image.png

一维高斯核


image.png

如图, 只在各个样本\{x_i\}_{i=1}^n附近近似, 减轻了维数灾难

参数个数不依赖输入变量维数d, 只由样本数n决定

样本数n很大时, 将样本\{x_i\}_{i=1}^n的子集\{c_j\}_{j=1}^b作为核均值计算, 抑制了计算负荷:
f_\theta(x)=\sum_{j=1}^b\theta_jK(x,c_j)

核模型是参数向量\vec \theta=(\theta_1,\cdots,\theta_n)^T的线性形式, 因此也是基于参数的线性模式的特例.

基于参数的线性模型称为参数模型, 核模型称为非参数模型

核映射: 核模型易扩展,当输入样本不是向量时(字符串,决策树, 图表等),通过构造两个样本x和x'的和核函数K(x,x')来建模.

3. 层级模型

非线性模型: 和参数相关的不是线性的模型均称为非线性模型
非线性模型中的层级模型:
f_\theta(x) = \sum_{j=1}^b\alpha_j\phi(x;\beta_j)
上式中, \phi(x;\beta_j)是包含参数向量\vec \beta的基函数, \vec \alpha是参数向量
层级模型是基于参数向量\vec \theta = (\vec \alpha^T, \beta_1^T, \cdots, \beta_b^T)^T非线性形式

S型基函数:
\phi(x;\beta) = \frac{1}{1+exp(- x^T \omega-\gamma)}, \beta = (\omega^T, \gamma)^T

S型基函数

高斯基函数:
\phi(x;\beta) = exp(-\frac{\|x-c\|^2}{2h^2}), \beta = (c^T, h)^T

高斯基函数

  • 使用S型核函数的层级模型称为人工神经网络

  • 上式中的高斯函数和核模型中的高斯核相同,但是带宽和均值非固定

  • 层级模型会对耦合系数\{\alpha_j\}_{j=1}^b,带宽均值都进行学习, 因此层级模型比核函数更灵活.

  • 人工神经网络学习过程艰难: 参数\theta和函数f_\theta不是一一对应的

  • 常采用贝叶斯方法学习人工神经网络

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,616评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,020评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,078评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,040评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,154评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,265评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,298评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,072评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,491评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,795评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,970评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,654评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,272评论 3 318
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,985评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,223评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,815评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,852评论 2 351

推荐阅读更多精彩内容

  • 以西瓜书为主线,以其他书籍作为参考进行补充,例如《统计学习方法》,《PRML》等 第一章 绪论 1.2 基本术语 ...
    danielAck阅读 4,507评论 0 6
  • 注:题中所指的『机器学习』不包括『深度学习』。本篇文章以理论推导为主,不涉及代码实现。 前些日子定下了未来三年左右...
    我偏笑_NSNirvana阅读 39,947评论 12 145
  • 一山三石阅读 272评论 0 10
  • 看自然, 更喜欢看生机盎然的那个自然 你只有拼命地去适应这个环境,我才能最终和环境达成一个共同体,如果你不变, 你...
    艾欣老师阅读 224评论 0 0