深度好文 | 单细胞RNA测序技术简介

文献解读

Potter, S. S. (2018).Single-cell RNA sequencing for the study of development, physiology anddisease.Nature Reviews Nephrology,14(8), 479.

        人体细胞中包含大约2万个基因,每个细胞存在自身特异的基因表达模式,仅对部分基因进行表达,导致了细胞特异性的蛋白质成分和生物功能。近来单细胞测序技术的兴起,使得我们能够在单个细胞水平上研究基因的表达模式,从而能够对细胞间的异质性问题进行更精准的研究。

        这篇综述出自美国俄亥俄州辛辛那提儿童医疗中心发育生物学系的Steven Potter研究员,文章主要围绕单细胞测序技术展开,包括现行单细胞测序技术的基本流程、存在问题与难点、数据处理过程,及其在生物医学领域的一些应用等。

        单细胞测序技术主要包括以下流程:组织解离得到单细胞悬液,细胞裂解,RNA逆转录成cDNA,PCR扩增,高通量测序,数据分析等。

        具体到操作层面上,单细胞解离主要包括三种方法:(i)人工显微操作,需要借助于显微镜和微量吸管等设备,同时人工成本较高;(ii)激光捕获显微切割(Laser capture microdissection,LCM)技术,使用激光束从冷冻组织中切割分离单个细胞;(iii)荧光激活细胞分选(fluorescence-activated cell sorting,FACS),通过荧光标记将细胞群分开。FACS的方法通量较高,是目前的主流方法。细胞解离过程主要存在两个难点:(i)如何避免外在刺激对细胞转录产生影响。细胞内部存在早期反应基因(Early response genes)能够对外界刺激做出快速反应,因此解离过程中可能会发生细胞转录的变化。这个问题可以通过加入转录抑制因子,采用嗜冷性蛋白酶在冷冻条件下解离,或是仅对核RNA进行测序分析等方法进行克服;(ii)组织中可能存在一些细胞极难解离,或是十分脆弱容易破碎等,这个问题目前仍没有很好的解决方法。

        解离之后的单细胞处理,包括建库和扩增,主要采用的是基于微流控(Microfluidics)技术的方法。在微流控芯片中进行细胞裂解、反转录和cDNA的扩增,之后进行测序。代表性方法是Fluidigm C1测序平台,这样的方法精度较高,成本也较高。另一种是基于微液珠(Microdroplet)的方法,将分离的单细胞与微液珠结合形成油包结构,在油包结构中进行反转录和扩增,之后进行测序。代表性方法如10X Genomics测序平台。这种方法测序通量较高,当前的测序成本大约为1美元/细胞。

        单细胞测序的数据分析主要包括以下三步:(i)计算基因表达矩阵。根据测序reads上的barcode和UMI标签将reads比对到特定细胞的特定基因上并计数,以获得每个细胞中不同基因的表达量;(ii)质控。去除基因表达量很少和线粒体DNA含量较高的细胞;(iii)数据降维和聚类。通过主成分分析(Principal components analysis)及其他一些方法对基因表达数据进行降维,然后通过迭代性聚类分析对细胞进行分型。

        单细胞测序数据中的偏差主要来自于三个方面:(i)基因表达伴有随机性。许多基因的转录并不是一个稳定的过程,而是伴有很强的随机性,其mRNA的含量也是在不断变化的;(ii)单细胞mRNA含量较低。尤其对于一些转录水平更低的基因来说,mRNA检测十分困难;(iii)反转录和扩增过程的效率较低。

        单细胞测序技术的应用主要体现在三个方面:(i)细胞分化研究。借助单细胞测序以阐明同一亲本细胞如何分化产生不同类型的子代细胞;(ii)癌症发生发展研究。对肿瘤组织进行单细胞测序以对肿瘤微环境进行更加精准的刻画;(iii)其他疾病研究。对正常组织和疾病组织进行单细胞测序,以研究致病通路、鉴定新的疾病标志物以及可能的治疗靶标等。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 221,695评论 6 515
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 94,569评论 3 399
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 168,130评论 0 360
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,648评论 1 297
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,655评论 6 397
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 52,268评论 1 309
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,835评论 3 421
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,740评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 46,286评论 1 318
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,375评论 3 340
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,505评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 36,185评论 5 350
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,873评论 3 333
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,357评论 0 24
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,466评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,921评论 3 376
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,515评论 2 359

推荐阅读更多精彩内容