ReentrantLock源码分析

案例

public class AtomicDemo {

    private static int count=0;
    static Lock lock=new ReentrantLock(true);

    public static void inc(){
        lock.lock(); //获得锁(互斥锁) ThreadA 获得了锁
        try {
            Thread.sleep(1);
            count++;
        } catch (InterruptedException e) {
            e.printStackTrace();
        }finally {
            lock.unlock();//释放锁 ThreadA释放锁  state=1-1=0
        }
    }

    public static void main(String[] args) throws InterruptedException {
        for (int i = 0; i < 1000; i++) {
            new Thread(()->AtomicDemo.inc()).start();
        }
        Thread.sleep(4000);
        System.out.println("result:"+count);
    }
}

lock加锁

lock()

public void lock() {
        sync.lock();
    }
sync类关系图.jpg

sync有两个实现,ReentrantLock默认构造方法使用的是NonfairSync非公平锁,也可以使用公平锁,使用boolean参数的构造方法,传入true。

public ReentrantLock() {
        sync = new NonfairSync();
    }
public ReentrantLock(boolean fair) {
        sync = fair ? new FairSync() : new NonfairSync();
    }

先试用cas乐观锁方式保证只有一个线程获取到锁,此时设置state为1,并且将挡ReentrantLock的属性exclusiveOwnerThread设置为当前线程,表示由哪个线程获取的锁。

final void lock() {
            //并发控制
            if (compareAndSetState(0, 1))
                setExclusiveOwnerThread(Thread.currentThread());//保存当前的线程
            else
                //未获取到锁
                acquire(1);
        }
protected final boolean compareAndSetState(int expect, int update) {
        // See below for intrinsics setup to support this
        return unsafe.compareAndSwapInt(this, stateOffset, expect, update);
    }
protected final void setExclusiveOwnerThread(Thread thread) {
        //设置为获取到锁的线程
        exclusiveOwnerThread = thread;
    }

未获取到锁的线程走到acquire(1)方法,该方法中使用if判断,注意只有第一个条件为true时,才会进行第二个条件的判断。

  • tryAcquire:再次使用cas尝试获取锁,或者为锁的重入,state状态+1.
  • addWaiter:将未获得锁的线程加入到队列
  • acquireQueued:去抢占锁或者阻塞.
public final void acquire(int arg) {
        if (!tryAcquire(arg) &&
            acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
            selfInterrupt();
    }
protected final boolean tryAcquire(int acquires) {
            return nonfairTryAcquire(acquires);
        }
final boolean nonfairTryAcquire(int acquires) {
            //获得当前的线程
            final Thread current = Thread.currentThread();
            int c = getState();
            if (c == 0) {//无锁
                if (compareAndSetState(0, acquires)) {//cas
                    setExclusiveOwnerThread(current);//设置为当前线程
                    return true;//成功就不需要入队及阻塞
                }
            }
            //是当前线程,表示重入
            else if (current == getExclusiveOwnerThread()) {
                int nextc = c + acquires;//state+1
                if (nextc < 0) // overflow
                    throw new Error("Maximum lock count exceeded");
                setState(nextc);//不需要cas,因为只有当前线程在操作state的值。
                return true;
            }
            return false;//又没抢到,倒霉。。。。。。
        }

ddWaiter(Node.EXCLUSIVE), arg),创建node节点并加入到队列。
创建一个新的node,如果有尾节点,就cas尝试放入末尾,失败了调用enq方法,enq首先判断有没有node双向链表,没有的话创建一个空node,将head和tail指向他,然后将这次的node放入末尾,并将tail指向他。

private Node addWaiter(Node mode) {
        Node node = new Node(Thread.currentThread(), mode);//新建node
        // Try the fast path of enq; backup to full enq on failure
        Node pred = tail;
        if (pred != null) {
            node.prev = pred;
            //尝试放入末尾,cas,因为此处tail有竞争
            if (compareAndSetTail(pred, node)) {
                pred.next = node;
                return node;
            }
        }
        enq(node);
        return node;
    }
private Node enq(final Node node) {
        for (;;) {
            Node t = tail;
            //双向链表时空的
            if (t == null) { // Must initialize
                //空node
                if (compareAndSetHead(new Node()))
                    tail = head;
            } else {
                node.prev = t;
                //cas尝试放到尾部。
                if (compareAndSetTail(t, node)) {
                    t.next = node;
                    return t;
                }
            }
        }
    }

acquireQueued抢占或者阻塞
此处是做Node节点线程的自旋过程,自旋过程主要检查当前节点是不是head节点的next节点,如果是,则尝试获取锁,如果获取成功,那么释放当前节点,同时返回。至此一个非公平锁的锁获取过程结束。
当然不是无限自旋,某个条件达成,当前线程将会阻塞。

final boolean acquireQueued(final Node node, int arg) {
        boolean failed = true;
        try {
            boolean interrupted = false;
            for (;;) {
                final Node p = node.predecessor();
                if (p == head && tryAcquire(arg)) {//如果当前node时head的next,尝试获取一次锁
                    setHead(node);
                    p.next = null; // help GC
                    failed = false;
                    return interrupted;
                }
                if (shouldParkAfterFailedAcquire(p, node) &&
                    parkAndCheckInterrupt())
                    interrupted = true;
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }

检查一下当前Node的前置节点pred是否是SIGNAL,如果是SIGNAL,那么证明前置Node的线程已经Park了,如果pre节点状态>0,表示节点退出或者中断,将该节点从队列移除,如果waitStatus<=0,那么设置waitStatus为SIGNAL,因为是自旋操作,所以最终一定会返回true。

private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
        int ws = pred.waitStatus;
        if (ws == Node.SIGNAL)
            /*
             * This node has already set status asking a release
             * to signal it, so it can safely park.
             */
            return true;
        if (ws > 0) {
            /*
             * Predecessor was cancelled. Skip over predecessors and
             * indicate retry.
             */
            do {
                node.prev = pred = pred.prev;
            } while (pred.waitStatus > 0);
            pred.next = node;
        } else {
            /*
             * waitStatus must be 0 or PROPAGATE.  Indicate that we
             * need a signal, but don't park yet.  Caller will need to
             * retry to make sure it cannot acquire before parking.
             */
            compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
        }
        return false;
    }

parkAndCheckInterrupt使当前的线程park,即暂停了线程的轮询。当Unlock时会做后续节点的Unpark唤醒线程继续争抢锁。

private final boolean parkAndCheckInterrupt() {
        LockSupport.park(this);
        return Thread.interrupted();
    }

如果线程意外中断,将调用Thread.interrupted(),判断是否中断,若中断返回true,导致interrupted = true运行,此时failed也为true,触发cancelAcquire移除退出或中断的节点,最后执行selfInterrupt(),将线程再次中断。

unlock释放锁

public void unlock() {
        sync.release(1);
    }

public final boolean release(int arg) {
        if (tryRelease(arg)) {
            Node h = head;
            if (h != null && h.waitStatus != 0)
                unparkSuccessor(h);
            return true;
        }
        return false;
    }

代码相对lock简单,只说一些重点,tryRelease释放锁,如果为true并且head不为空,等待状态不为0,表示有后续等待的node,则唤醒后一个node。
tryRelease

protected final boolean tryRelease(int releases) {
            if (!isHeldExclusively())//是否是当前线程
                throw new IllegalMonitorStateException();
            int nextc = getState() - releases;//state值-1
            boolean free = exclusiveCount(nextc) == 0;
            if (free)//重入锁是否已经都释放了
                setExclusiveOwnerThread(null);//置为空
            setState(nextc);//设置state
            return free;
        }

unparkSuccessor将head状态设置为0,找寻有效的next节点,唤醒next的node节点。

private void unparkSuccessor(Node node) {
        int ws = node.waitStatus;
        if (ws < 0)
            compareAndSetWaitStatus(node, ws, 0);
        Node s = node.next;
        if (s == null || s.waitStatus > 0) {
            s = null;
            for (Node t = tail; t != null && t != node; t = t.prev)
                if (t.waitStatus <= 0)
                    s = t;
        }
        if (s != null)
            LockSupport.unpark(s.thread);
    }

唤醒后acquireQueued进行自旋转获取锁,并移除head,将head设置为当前节点,至此lock和unlock已经全部阅读完毕。


ReentrantLock.jpg
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。
禁止转载,如需转载请通过简信或评论联系作者。