SCENIC识别转录因子调控网络原理

生物体必须要有精确的调控网络才能发挥其作用,序列特异性 TF 通过结合在顺式作用元件 (cis-regulatory element,CRE)上的特异性位点 (motif) 来调节靶标基因的转录,进而影响生物表型和适应度景观,同时还要跟其它很多因子交互,包括其它的转录因子、共同因子等。例如 40% 的肿瘤变异基因通过影响TF影响发病机制,一些著名的肿瘤基因如MYC, E2F, 和NF-κB都是转录因子。

人类基因组包含了 1800个 序列特异性的TF,每一个TF可以调节数百个靶标基因。某个TF和它所调控的所有靶标基因称为一个调节子( Regulon )。

SCENIC 的转录因子分析

SCENIC 的转录因子分析内容主要可分为两部分,建立 RegulonRegulon活性分析

生成由转录因子主导的基因调控网络(gene regulation network,GRNs) \rightarrow 过滤网络内的假阳性靶点 \rightarrow Regulon活性分析


1、共表达识别TF基因调控网络(GENIE3)

SCENIE 基于GRNBoost(由于R语言中好像没有GRNBoost算法框架,所以R版本的SCENIC使用了随机森林分类器,本质都是集成决策树模型),以 TF转录因子在样本的表达建立分类模型,从而搜索与 TF基因 协同变化的基因来确定潜在靶标基因(转录因子的潜在共表达网络)。每个网络包含一个转录因子及其系列潜在靶基因,纯粹基于共表达分析。…. 这也是SCENIC与WGCNA生成共表达网络时的差异(前者是分类,后者是聚类)。

GENIE 推断共表达这一步,可以事先通过降采样抽取少量细胞来推断 GRNs,后面在Regulon活性分析时纳入全组织细胞。

2、 构建Regulon (RcisTarget )

GENIE3 只是基于基因与TF的共表达推断建立了一个粗糙的调控网络,因此每个GRNs里面肯定存在假阳性的靶基因(即虽然是同该网络下的TF具有共表达趋势,但其实并不是受到了该TF调控的结果),对应构建一个尽量可靠的TF调控网络,这些靶点是有必要被过滤掉的。RcisTarget 基序富集分析方法基于 ENCODE 项目组的 motif数据库 ,该数据库记录了每个基因上游序列与 motif 的结合能,从而能够为每个TF-GRNs 执行 motif 富集分析,以过滤掉每个网络内缺乏 当前TF的直接motif支持 的假阳性靶标得到每个TF和其更可靠的靶标基因组成,称为 Regulon

2.1 RcisTarget 框架下的 Motif 富集原理



2.2 RcisTarget 纯化靶标基因策略

  • 对于一个 TF1 的所有潜在靶标基因集(s),执行 RcisTarget 富集 motifs ;
  • 对这些TF1靶标基因集合富集的 motifs 参考注释表,过滤出是TF1直接结合的 motifs ;
  • 使用 GSEA 的排列富集策略,保留每个 motif 中对富集得分贡献最大的基因成员与TF1 组成最终的Regulon。

参考官网该步骤的解释 createRegulons

3、 Regulon 活性评分-AUCell

AUCell 分析内容是对每个 Regulon 在各个细胞的活性进行评分。参考 GSVA 算法基于基因表达水平的排列策略。
我个人理解这个AUC应该是和motif富集的AUC是同个概念的,即计算了每个细胞里排列前5%的基因里 Regulon的召回率。
AUCell:计算单细胞转录组的每个细胞中特定基因集的活性程度




原理类:
iRegulon:从基因列表到调控网络
用iRegulon进行主转录因子的预测
RcisTarget包基因集的转录因子富集分析
单细胞SCENIC分析原理和流程
GSA、GSEA、ssGSEA、GSVA的算法原理及它们的联系与区别
经验累积分布函数

教程类:
官方SCENIC (aertslab.org)
SCENIC软件配套数据库_database
SCENIC单细胞转录因子分析
【单细胞测序21】scenic转录因子应用全解析和代码讲解-欧易生物_哔哩哔哩_bilibili

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
禁止转载,如需转载请通过简信或评论联系作者。
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,635评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,628评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 165,971评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,986评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,006评论 6 394
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,784评论 1 307
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,475评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,364评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,860评论 1 317
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,008评论 3 338
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,152评论 1 351
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,829评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,490评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,035评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,156评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,428评论 3 373
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,127评论 2 356

推荐阅读更多精彩内容