SQL 与 NoSQL 差别

Source:

https://www.thegeekstuff.com/2014/01/sql-vs-nosql-db


Most of you are already familiar with SQL database, and have a good knowledge on either MySQL, Oracle, or other SQL databases. In the last several years, NoSQL database is getting widely adopted to solve various business problems.

It is helpful to understand the difference between SQL and NoSQL database, and some of available NoSQL database that you can play around with.

SQL vs NoSQL: High-Level Differences

SQL databases are primarily called as Relational Databases (RDBMS); whereas NoSQL database are primarily called as non-relational or distributed database.

SQL databases are table based databases whereas NoSQL databases are document based, key-value pairs, graph databases or wide-column stores. This means that SQL databases represent data in form of tables which consists of n number of rows of data whereas NoSQL databases are the collection of key-value pair, documents, graph databases or wide-column stores which do not have standard schema definitions which it needs to adhered to.

SQL databases have predefined schema whereas NoSQL databases have dynamic schema for unstructured data.

SQL databases are vertically scalable whereas the NoSQL databases are horizontally scalable. SQL databases are scaled by increasing the horse-power of the hardware. NoSQL databases are scaled by increasing the databases servers in the pool of resources to reduce the load.

SQL databases uses SQL ( structured query language ) for defining and manipulating the data, which is very powerful. In NoSQL database, queries are focused on collection of documents. Sometimes it is also called as UnQL (Unstructured Query Language). The syntax of using UnQL varies from database to database.

SQL database examples: MySql, Oracle, Sqlite, Postgres and MS-SQL. NoSQL database examples: MongoDB, BigTable, Redis, RavenDb, Cassandra, Hbase, Neo4j and CouchDb

For complex queries: SQL databases are good fit for the complex query intensive environment whereas NoSQL databases are not good fit for complex queries. On a high-level, NoSQL don’t have standard interfaces to perform complex queries, and the queries themselves in NoSQL are not as powerful as SQL query language.

For the type of data to be stored: SQL databases are not best fit for hierarchical data storage. But, NoSQL database fits better for the hierarchical data storage as it follows the key-value pair way of storing data similar to JSON data. NoSQL database are highly preferred for large data set (i.e for big data). Hbase is an example for this purpose.

For scalability: In most typical situations, SQL databases are vertically scalable. You can manage increasing load by increasing the CPU, RAM, SSD, etc, on a single server. On the other hand, NoSQL databases are horizontally scalable. You can just add few more servers easily in your NoSQL database infrastructure to handle the large traffic.

For high transactional based application: SQL databases are best fit for heavy duty transactional type applications, as it is more stable and promises the atomicity as well as integrity of the data. While you can use NoSQL for transactions purpose, it is still not comparable and sable enough in high load and for complex transactional applications.

For support: Excellent support are available for all SQL database from their vendors. There are also lot of independent consultations who can help you with SQL database for a very large scale deployments. For some NoSQL database you still have to rely on community support, and only limited outside experts are available for you to setup and deploy your large scale NoSQL deployments.

For properties: SQL databases emphasizes on ACID properties ( Atomicity, Consistency, Isolation and Durability) whereas the NoSQL database follows the Brewers CAP theorem ( Consistency, Availability and Partition tolerance )

For DB types: On a high-level, we can classify SQL databases as either open-source or close-sourced from commercial vendors. NoSQL databases can be classified on the basis of way of storing data as graph databases, key-value store databases, document store databases, column store database and XML databases.

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 221,198评论 6 514
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 94,334评论 3 398
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 167,643评论 0 360
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,495评论 1 296
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,502评论 6 397
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 52,156评论 1 308
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,743评论 3 421
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,659评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 46,200评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,282评论 3 340
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,424评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 36,107评论 5 349
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,789评论 3 333
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,264评论 0 23
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,390评论 1 271
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,798评论 3 376
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,435评论 2 359

推荐阅读更多精彩内容